Open sesame - or how secure is your stuff in electronic lockers DEFCON 32 – Dennis Giese, braelynn

Pickit

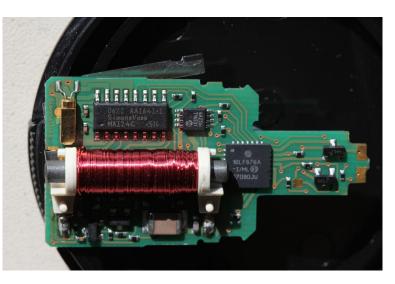
0

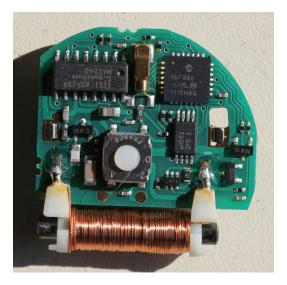
About Dennis

- "Security Researcher" aka Hardware Hacker
 - Research field: Wireless and embedded Security&Privacy
- Interests: Reverse engineering of interesting devices
- Vacuum Robot (and IoT) collector
 - Rooting of vacuum robots
 - <u>https://robotinfo.dev</u>
- Target of a "Cease&Desist"@DEFCON
 - (withdrawn as of 10.08.2024)

About braelynn

- Hacks things for Leviathan Security Group
 - (this talk is entirely personal research and does not reflect their views ;))
- Focus: Application Security and APIs
- Hardware hacking for fun
 - Robots, Cameras, Locks
- My first DEF CON talk
 - Also named in the Cease and Desist!




Previous work on locks

- Simons & Voss locks (2010-2013)
 - Published at ACM CCS 2013

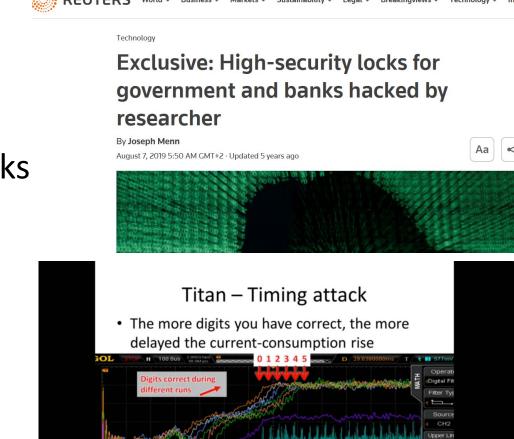
Michael Weiner, Maurice Massar, Erik Tews, Dennis Giese and Wolfgang Wieser. 2013. Security analysis of a widely deployed locking system. In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security (CCS '13). Association for Computing Machinery, New York, NY, USA, 929–940. <u>https://doi.org/10.1145/2508859.2516733</u>

Previous work on locks

• Schlage AD-400/401 Electronic Locks (2017/2018)

Goals of this talk

- Overview of the reverse-engineering of "Digilock", "SAG" locks
- Learn about vulnerabilities
- Understand methods to extract firmware and config
- Raise awareness about PIN numbers
- Sidenote:
 - We use Digilock and SAG as examples and are not claiming that they are more/less secure than other companies
 - We chose them due to their good reputations and quality of their products
 - We reported to the vendors. Digilock is actively working on fixing issues


About this talk

- Continuation of our NULLcon Berlin 2024 talk
- Focus on offline, managed locks (e.g. master keyed)
- Does not cover
 - management software
 - re-provisioning
 - physical attacks using magnets
 - destructive attacks (drilling, decapping, etc.)
- We include a statement of Digilock in regard to their C&D

MOTIVATION

- Hacking electronic locks is not new
- Researchers focus on high security safe locks
 - Lots of research in side-channel
 - Safes contain expensive things
 - Big impact if insecure

Problem: It is hard to defend against physical attacks and motivated attackers

https://www.reuters.com/article/us-locks-cyber-exclusive/exclusive-high-security-locks-for-government-and-banks-hacked-by-researcher-idUSKCN1UW26Z/ https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEF%20CON%2024%20-%20Plore-Side-Channel-Attacks-On-High-Security-Electronic-Safe-Locks.pdf https://www.youtube.com/watch?v=IXFpCV646E0

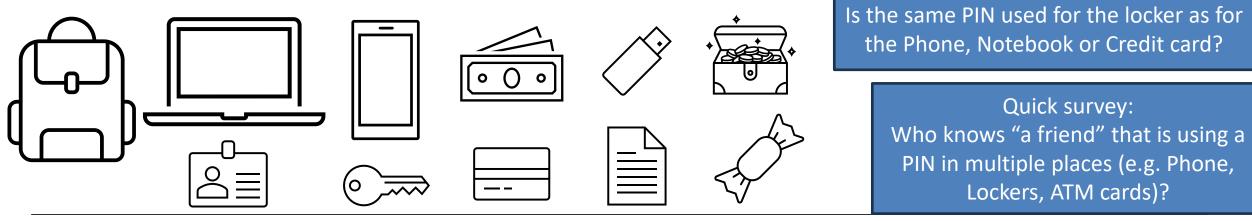

80. OM

- Consumer locks, safes and cabinets are known to be bad
 - Mechanical flaws
 - Trivial bypasses
 - Insecure software

LockPickingLawyer: [1571] The DUMBEST "Safe" Design I've Ever Seen! (Toriexon) <u>https://www.youtube.com/watch?v=gJrSWXFXvIE</u>

- Northeastern University (~2018)
 - Lockers introduced to labs
 - locked with user-chosen PIN
- Also seen in
 - many co-working spaces
 - Banks
 - Airports
 - Hotels
 - Gyms

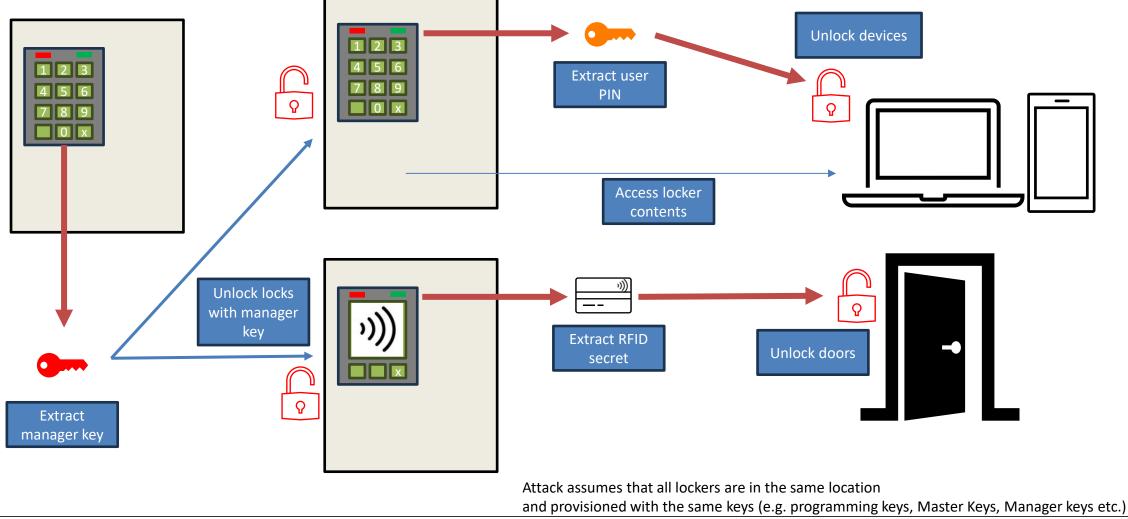
- Only few, widely used vendors exist
- Locks stay in use for a very long time



Left: Digilock lockers in a gym in Seattle (thanks to @tihmstar) Middle: SAG SAFE-O-TRONIC[®] lockers in a university in Germany Right: Digilock lockers in a 5* hotel in Italy (thanks to @AapoOksman)

Why hack lockers/cabinets?

- Lockers and cabinets are everywhere
- Used in public spaces or shared workspaces
- Forgotten PIN, lost keys, Red Team penetration tests
- Tamper with correct audit logs
- Might contain interesting stuff (including our own)

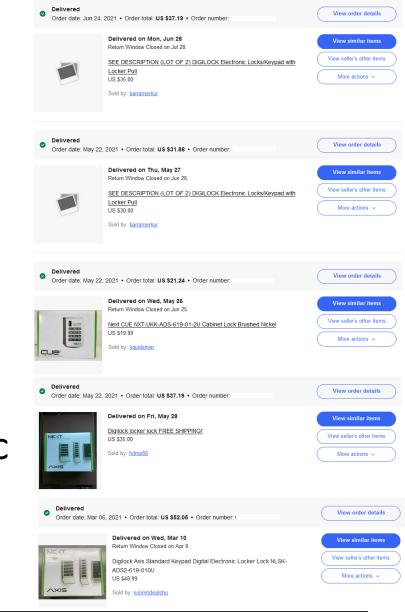


ATTACK IDEAS AND LOGISTICS

What are we looking for?

- Firmware
 - Find secret backdoors or bugs
 - Understand functionality
 - Create malicious custom firmware
- Interesting data
 - Key IDs, user PINs, RFID IDs, logs
- Ways to easily open locks

Idea: Lateral movement



(09 11.08.2024) DEFCON 32 – Dennis Giese, braelynn

Typically, one master/manager key extracted from one installation wont work in another

Procurement

- Experiments require multiple devices
 - − Cannot use someone else's property ⊗
- Locks and Keys are expensive
 - Locks > USD \$100, Keys > USD \$50
- Surplus locks on eBay
 - Many gyms closed due to the pandemic
 - Cheap provisioned locks
 - New locks from failed projects

THE DIGILOCK ECOSYSTEM

Digilock

- Brand of Security People Inc. (US based)
- Over 40 years in the industry
- "global leader in keyless lock solutions"
- Many different types and brands of locks
 - Connected locks, offline locks, mechanical locks
 - Access medium: RFID, PIN, key fobs, smartphone (BLE)
 - Brands (examples): "Digilock", "NEXT", "Numeris"

Industries

Digilock Industries Locks Specialty Lockers About Where to Buy Q Search Digilock Blog Support

Solutions Tailored to Your Industry

WORKSPACE

EDUCATION

HEALTH/FITNESS

HEALTHCARE

RETAIL

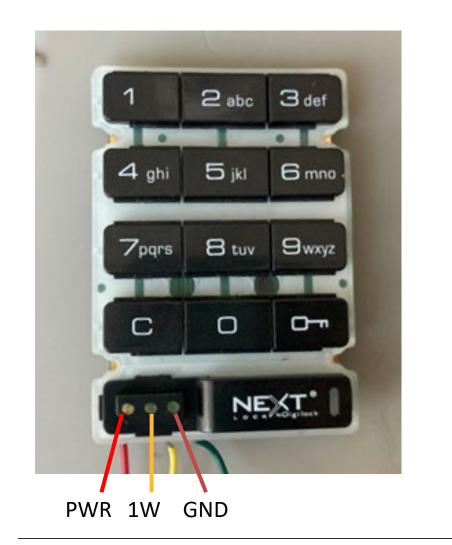
PRO/COLLEGE SPORTS

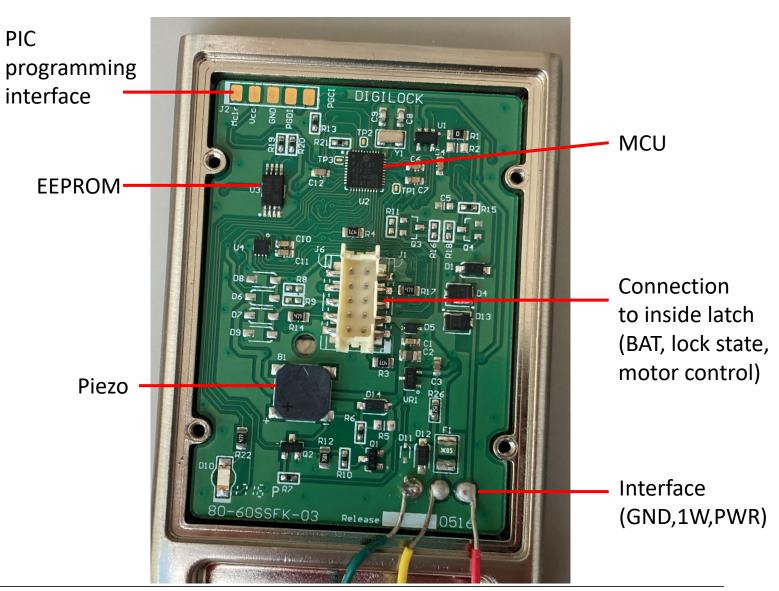
MANUFACTURING

HOSPITALITY

GOVERNMENT

Source/Screenshot(March 2024): https://www.digilock.com/

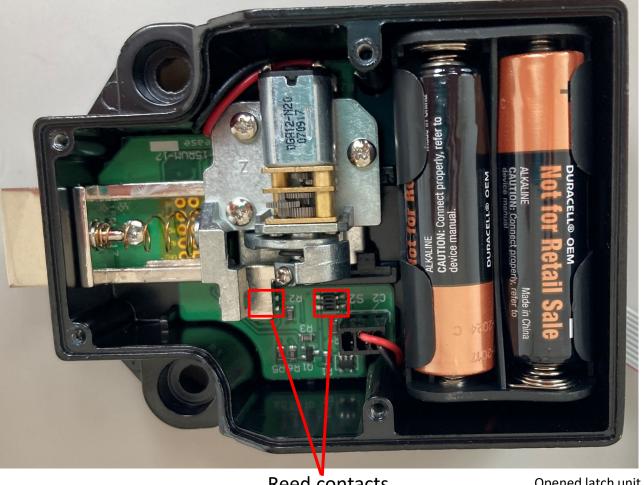

Examples



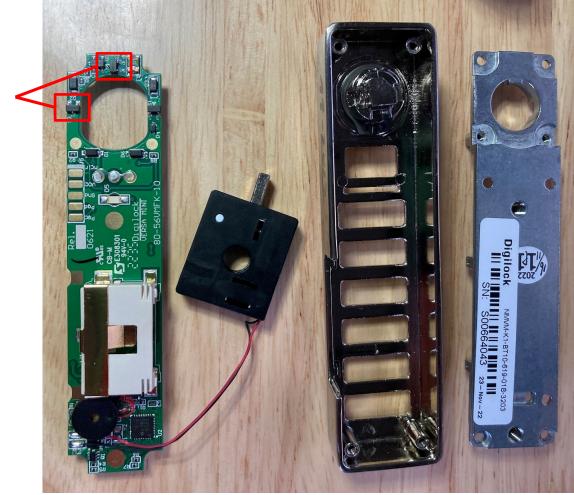
- All locks have similar hardware
 - Similar type of MCU
- No tamper switches
- Locking state controlled by latch
- Protection against physical attacks
- Features depend on brand
 - Audit support
 - Assigned/shared locker functionality

Different brands of Digilock locks (AXIS, CUE, AXIS, 4G)

- Micro Controller (MCU)
 - PIC18F45K20/PIC18F25K20
 - PIC24FJ256GA
- EEPROM (for audit or credentials storage)
 - serial I²C bus EEPROM
- RFID
 - ST ST25R3911B
 - LEGIC SM-6300 (+HSM+BLE)


Supposedly the HSM is used on new locks

Digilock 4G (outside part) with latch unit (inside part)



Reed contacts for lock state

Opened latch unit

Reed contacts for lock state

Digilock Versa Mini teardown

Keys

- Programming Key (yellow)
 - Only one exists per "locking system"
 - Adds/removes manager keys
 - Allows lock override
 - Power for a dead lock
 - Cloning configuration/audits/etc.
- Manager Keys (black)
 - Allows lock override
 - Power for a dead lock
- ADA Key (blue)
 - Alternative to PIN / RFID

Digilock keys: Programming, Manager, ADA, Reset ADA: "Americans with Disabilities Act"

Keys

- Programming/Manager key
 - Same hardware, different case color
 - 9V battery
 - PIC18F25K20
 - PIC programming interface
- ADA key
 - DS2401 aka iButton
 - 48 bit ID

Programming key

Digilock

80-25KEY-03

Keys

- Data Key
 - Connects to tablet via USB
 - Works like a programming/manager key
 - Advanced functionality (Audits, etc.)
 - PIC24FJ64
 - PIC programming interface

One Wire communication

- Interception with logic analyzer
- Usage of "Read ROM" command
- Keys return 8 bytes of ID (7 Data + 1 CRC8)
- Key types identified by first byte of ID
- Bus resets after transaction

No cryptographic operations used

PIC MCUS

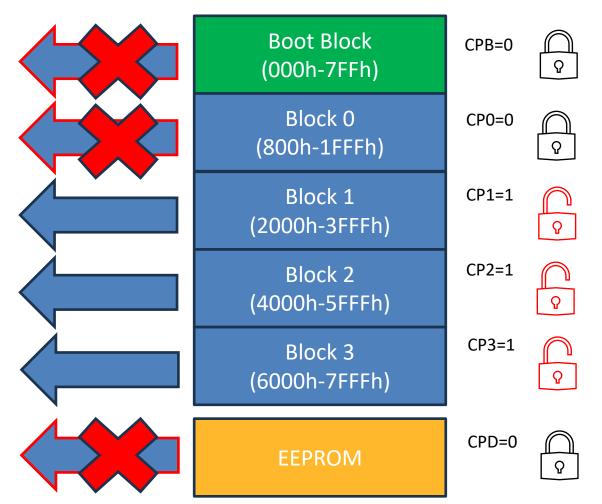
PIC intro

- MCU by Microchip
- Very common for locks
 - Used by Simons&Voss, Schlage, Kitlock, Aqara, etc.
 - Low power, ideal for battery operation
- PIC18
 - 8 Bit MCU, released 2000
- PIC24
 - 16 bit MCU
 - No on-chip Data EEPROM

Example: PIC18F25K20

- 1536 Bytes SRAM
- 32 KBytes Flash
- 256Bytes EEPROM
- Protections
 - Code Protection (CP)
 - Write Protection (WRT)
 - External Block Table Read (EBTRB)

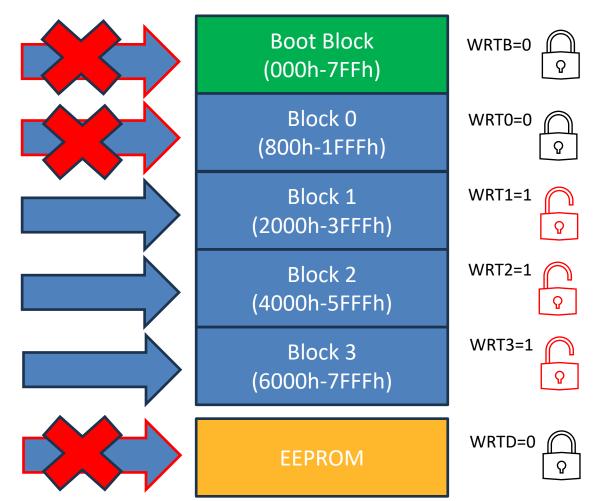
Boot Block (000h-7FFh)	CPB, WRTB, EBTRB
Block 0 (800h-1FFFh)	CPO, WRTO, EBTRO
Block 1 (2000h-3FFFh)	CP1, WRT1, EBTR1
Block 2 (4000h-5FFFh)	CP2, WRT2, EBTR2
Block 3 (6000h-7FFFh)	CP3, WRT3, EBTR3
EEPROM	CPD, WRTD


Code Protection example

Microchip Pickit debugger

- Blocks Boot, 0 and Data return 0's
- Blocks 1,2,3 return data

Code Protection (CP) is also known as Readout Protection (RDP)



Write Protection example

Microchip Pickit debugger

- Blocks Boot, 0 and Data fail writes
- Blocks 1,2,3 are programmed

PIC Security

- MCUs offer only basic protection against attacks
- Many attacks exist (even if protections are enabled)
 - Optical/Laser attacks in 2002
 - UV erasure of config bits
 - Glitching
 - Overwriting individual blocks to dump other blocks

Examples:

Skorobogatov, Sergei & Anderson, Ross. (2002). Optical Fault Induction Attacks. Optical Fault Induction Attacks. 2523. 2-12. 10.1007/3-540-36400-5_2.

https://www.bunniestudios.com/blog/?page_id=40

http://blog.lanka.sk/2013/11/hacking-apc-back-ups-hs-500.html

ATTACKS

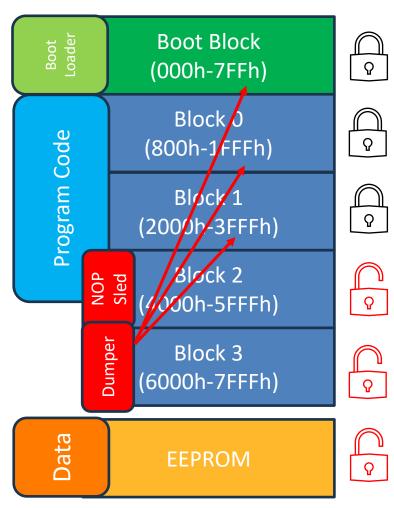
- Naive approach: connect debugger and dump MCU flash
 - Debug pins were exposed on all locks and keys
 - Finding: very inconsistent protection settings

- General observation:
 - No write protection
 - External EEPROMs not encrypted

Code protected?	EEPROM protected?
yes *	no
no	no
yes *	no
no	no
no	no
	<pre>protected? yes * no yes * no no</pre>

Output of flash read for protected lock

:020000040000FA


Locks/Keys manufactured between August 2014 and November 2022

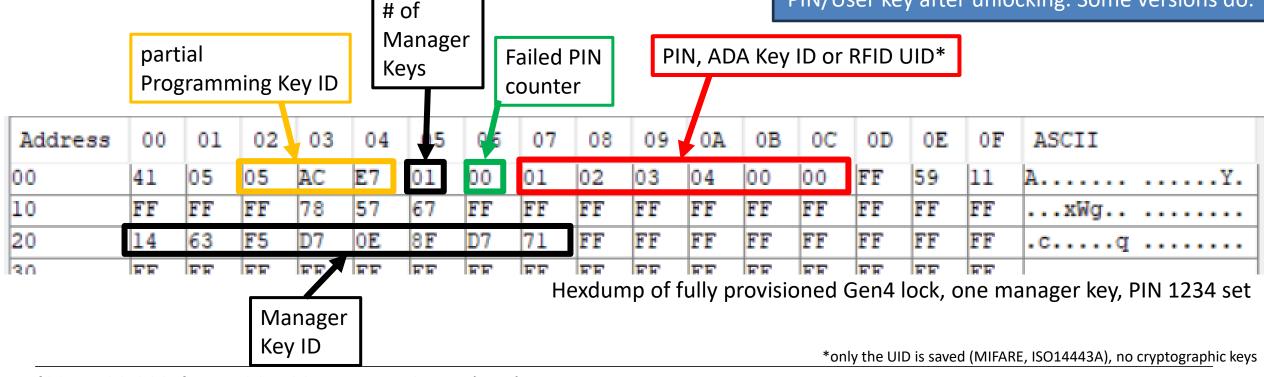
(09 11.08.2024) DEFCON 32 – Dennis Giese, braelynn

* Partially protected, only "boot block" and block 0-1 For a full overview check: https://dontvacuum.me/talks/DEFCON32-locks

39

- For unprotected devices
 - Dump Code Memory and EEPROM directly
- For partially protected devices
 - Use of custom dumper to exfiltrate firmware
 - Access EEPROM memory directly
- Attacks described in our NULLCON Berlin 2024 talk

Code/Data on NEXT CUE lock


- Firmware extraction successful for all locks
- Binary can be analyzed and modified
 - Ghidra has PIC support
 - No signatures or integrity checks
- Method well known and established

Address	00	01	02	03	04	05	06	07	08	09	0A	0B	8C	0D	θE	0F	ASCH
000007B0:	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
000007C0:	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
000007D0;		FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
000007E0;	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
000007F0;	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	
00000800;	01	01	EΑ	6A	E3	25	E9	6E	E4	51	EΑ	22	EF	50	ΘB	08	j.%.n.Q.".P
00000810:	05	E1	E9	EC	10	FØ	00	0E	27	D1	54	DØ	01	01	D9	50	' . T P
00000820:	03	0F	E3	6F	DA	CF	E4	F1	01	50	01	01	EΑ	6A	E3	25	oPj.%
00000830:	E9	6E	Ε4	51	EΑ	22	EF	50	66	08	27	Ε1	00	01	99	05	. n. Q. ". Pf. '
00000840:	1F	E1	00	01	87	0E	69	6F	02	6A	02	50	03	08	13	E3	io.j.P
00000850:	02	50	EΑ	6A	99	0F	E9	6E	00	0E	EΑ	22	EF	CF	E6	FF	.P.jn"
00000860:	69	CØ	E6	FF	8E	EC	16	FØ	42	E9	00	01	69	29	00	01	i
00000870:	69	6F	02	2A	EΑ	D7	85	EC	11	FØ	01	0E	F5	DØ	04	DØ	10.*
00000880:	E9	ЕC	10	FØ	01	θE	FO	DØ	1D	DØ	03	50	09	08	ΘE	E3	P
00000890:	04	50	09	08	θB	E3	05	50	09	98	08	E3	86	50	09	08	. P P P
000008A0:	05	E3	θB	θE	87	5C	82	E1	10	DØ	ΘC	DØ	ΘB	ΘE	83	5C	
000008B0:	08	E1	ØΒ	0E	04	5C	05	E1	E9	EC	10	FØ	00	ΘE	D4	DB	
000008C0:	01	D0	00	00	01	28	01	6E	44	D7	85	EC	11	FØ	01	0E	(. nD
000008D0:	E6	6E	15	EC	13	FØ	41	E9	01	6A	ЗF	DE	E6	6E	01	01	.nA.j?n
000008E0:	D9	50	08	θF	E3	6F	DA	CF	E4	F1	01	50	01	01	EΑ	6A	.PoPj
000008F0:	E3	25	E9	6E	E4	51	EΑ	22	E5	52	E7	50	EF	6E	D5	9E	. %. n. Q. ". R. P. n
00000900:	01	0E	E6	6E	15	EC	13	FØ	41	E9	F2	84	82	DØ	00	0E	n A
00000910:	AB	D0	01	01	D9	50	08	0F	E3	6F	DA	CF	Ε4	F1	01	50	P o P
00000920:	01	01	EΑ	6A		25	E9	6E	E4	51	EΑ	22	EF	50	9C	08	j.%.n.Q.".P
00000930:		E1	02	6A	82		04	08	10	E3	01		D9	50		0F	j.PP
00000940:		6F	DA	CF	E4		01	50	01	01	EΑ	6A	E3	25		6E	.oPj.%.n
00000950:		51		22	EF	68	82			D7	01	68	80		04	0E	. Q. " . h. * h
00000960:			15	E2	01	01	D9	50	08	0F	E3	6F	DA		Ε4	F1	. \ P o
00000970:		50		01		6A					E4	51	EΑ	22		50	.Pj.%.n.Q.".P
00000980:		08		E1		EC		FØ	00	0E	6E	DØ		$D\Theta$	04	0E	
00000990:		5C		E1	0B		8C		04	E0	E9	EC		FØ	00	0E	
000009A0:		DØ		6A		50	03	08		E3	01		D9	50	08	0F	сј.Р&Р
000009B0:		6F	DA	CF			82	50	01	01	EΑ	6A	E4		E9	6E	. o P j. %. n
000009C0:		51		22			E3		01		D9	50	03	0F		6F	. Q. " P o
000009D0:		CF	E7	F1		50	01	01		6A	E6	25	E9	6E		51	
000009E0:		22	EF	50	01	01	E3	5D	04	ΕØ	E9	EC	10		00	0E	. ". P]
000009F0:		DØ		2A		D7	03				07				8E		;*
00000A00:		FØ		E9	04	EB	E6	FF		0E	E6	6E			16	FØ	<u>.</u> .Bn
00000A10:		E9		EΒ	E6		09	0E		6E					42		BB.
00000A20:	_	EΒ	E6	FF	0A		E6	6E		EC		FØ	42		85	EC	B
00000A30:		FØ		0E		6E	BA		16	FØ	41	E9	85 65			FØ	n <mark>.</mark> A
00000A40:				DØ	8C		0B	0E		5C		E1	0B	0E		5C	X <u>X</u>
00000A50:	05	E1	E9	EC	10	FΘ	00	0E	07	D0	01	D0	00	00	01	28	
																	0x00000000 - 0x0000

EEPROM contents

- Requires trial and error to find data fields and meaning
- Differs between lock generations

Observation: Some locks do not wipe the PIN/User key after unlocking. Some versions do.

Emulation/Cloning Keys

- Applies to both RFIDs and Keys
- Only ID is required for cloning
 - Extraction from key or flash
- Can be emulated:
 - Arduino
 - Flipper Zero
 - Proxmark (RFIDs only)

Other attacks possibilities

- Bruteforce PINs and keys *
- Sidechannel attacks *
- Cloning lock configuration via OneWire
- Modifying contents of audit EEPROM
- Usage of malicious firmware

"Cease&Desist" incident

- Received C&D email at 2:16pm on 08.08.2024 (day before talk)
 - Copyright Act, Defend Trade Secret Acts, State trade secret law,
 Computer Fraud and Abuse Act, Digital Millenium Copyright Act
- By 3:30pm meeting with Hannah Zhao (EFF) and Kurt Opsahl
- Moved talk from Friday to Sunday
- Phone call with everyone involved on Saturday evening
 - Exchanged views and amicably resolved differences
- C&D withdrawn in writing at 0:24am on 11.08.2024

Summarized Digilock response

- Acknowledged communication about improvements prior to DEFCON
- Improvements:
 - Code protection to all data blocks
 - Implementation of code protection to PIC18 and PIC24
 - Communication encryption to prevent cloning via UID
 - EEPROM data encryption (at rest and in transit)
- In over 32 years no reported security incident due to a hacked lock
- Digilock is fully committed to providing secure solutions for its customers.
- Full statement on slide 71.

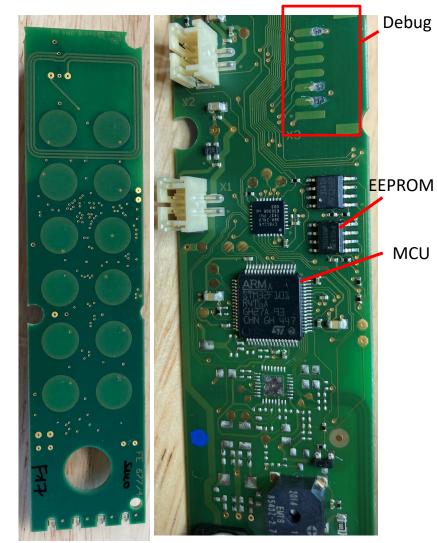
SCHULTE-SCHLAGBAUM AG (SAG)

Schulte-Schlagbaum AG (SAG)

- German company, existing since 1833
- Widely used in Europe/Germany
 - mechanic and electronic locker locks
 - Brand: SAFE-O-TRONIC [®]
 - Door* and cabinet/locker products * We do not cover door locks, but assume that they are the same platform as the cabinet locks
- Electronic locks
 - PIN, RFID, RFID+PIN
 - Audit logging supported

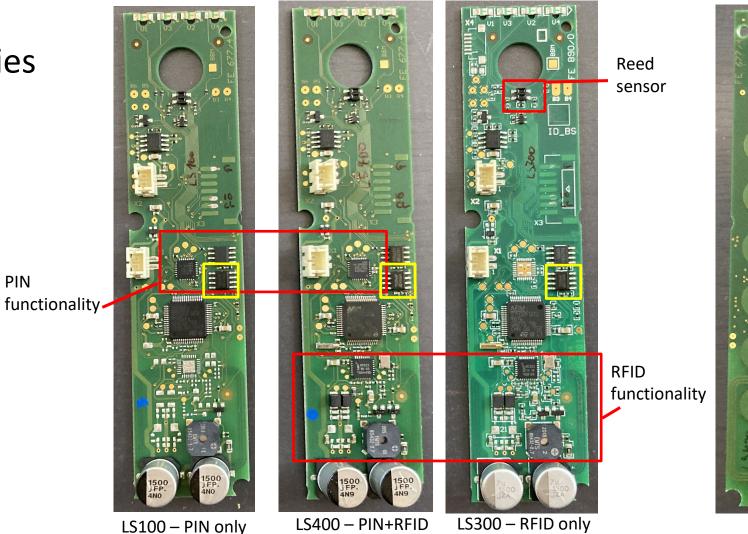
(09 11.08.2024) DEFCON 32 – Dennis Giese, braelynn

Source(March 2024): <u>https://en.sag-schlagbaum.com/company/history/</u> All trademarks, logos and brand names are the property of their respective owners. All company, product and service names used in this presentation are for identification purposes only.


Disassembled SAG LS-100

SAG LS-series locks

- Based on
 - STM32F101 MCU*
 - SPI EEPROM
- Security
 - SWD/Debugging not disabled
 - EEPROM not encrypted
 - No physical tamper switches



SAG LS-100 PCB

SAG LS-series locks

- Same PCB for all series
 - ICs unpopulated
- MCU for keypad
 - CY8C20436A
- MCU for RFID PIN - NXP RC522
- SPI EEPROM size
 - PIN-only: 1kbit
 - RFID: 256kbit

SAG LS-series keys

- RFID: support for Mifare Classic, Mifare DESFIRE, ISO14443A
- For > LS100: special RFIDs keys required for programming
 - Master key I and II for unlocking/relocking lockers
 - "Data" RFID tag for data transport (e.g. audit logs)
 - "Communicator": advanced handheld programmer

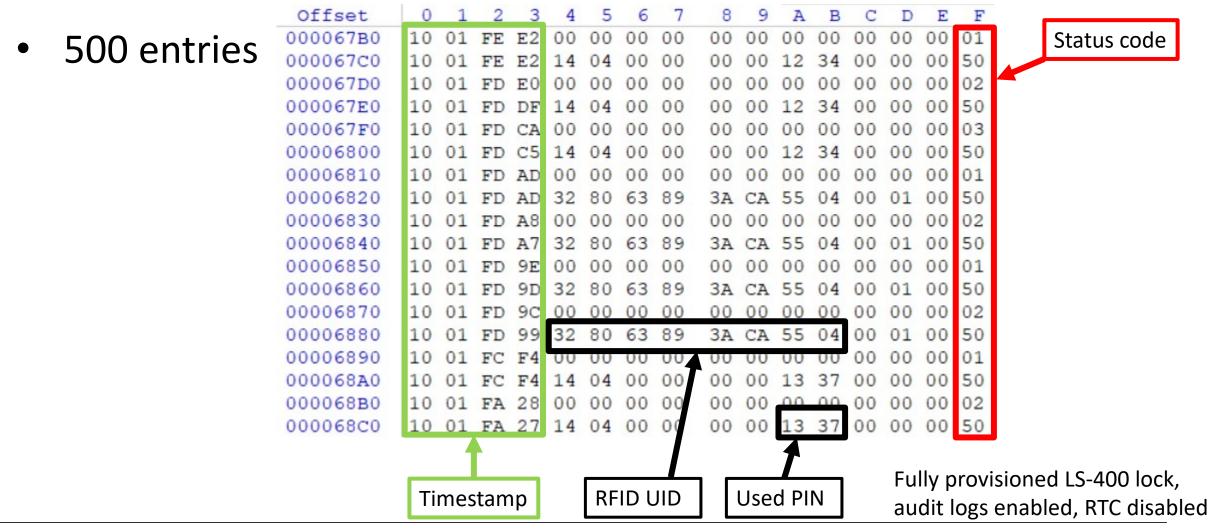
Selected Item

https://www.hafele.com/us/en/product/safe-o-tronic-ls200-programming-key-set-plastic-black-26mm-diameter/

Line Level PO

\$ 1,398.91 Per Set (Set) Suggested Retail Price V

Programming Key Set, for LS 200


Min.

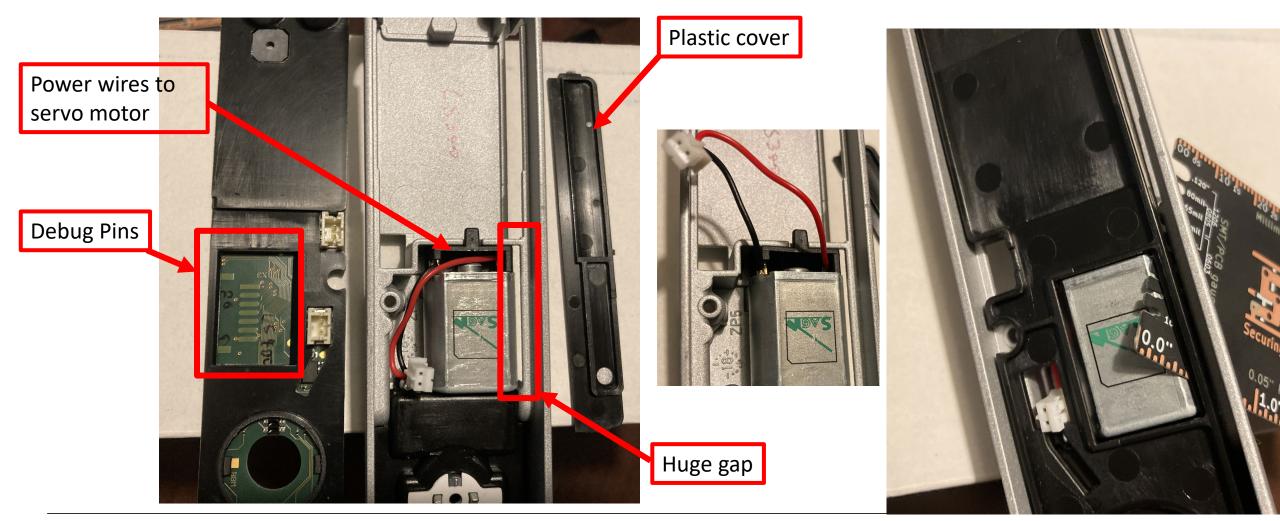
SAG LS-series EEPROM contents

													PI	N		
t	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
00	1C	AF	CC	15	01	01	02	04	20	15	00	01	11	00	30	15
10	FE	FF	FF	$\mathbf{F}\mathbf{F}$	FF	FF	FF	FF	FF	FF	FF	FI	FF	FF	14	04
20	10	02	03	00	01	01	11	83	00	00	01	37	48	00	AE	1D
30	00	00	FF	3C	3C	00	00	00	00	00	00	00	00	00	9B	19
40	00	02	00	00	00	00	00	00	00	01	33	70	00	00	CE	06
50	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$
60	ጉጉ	ਜਜ	ਜਜ	ਜਜ	नन	ਜਜ	ਜਜ	FF	नन	FF	FF	ਜਜ	नन	ਜਜ	чч	ዋዋ
									Master PIN PIN "3748" set							lock,

SAG LS-series EEPROM contents

SAG LS-series extracting firmware

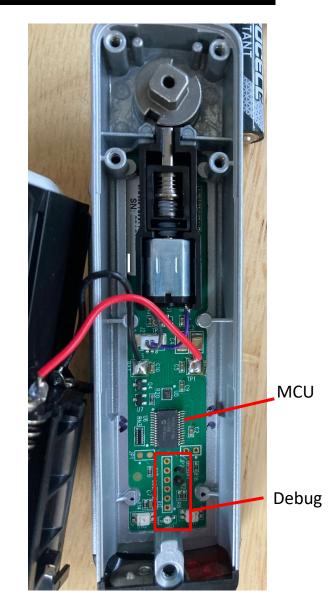
STM32


SWD debugging access with PCBites

Option bytes		
Read Out Protection		
Name	Value	Description
RDP		Read protection option byte The read protection is used to protect the software code stored in Flash memory.
		Unchecked : Flash memory is not read-protected. Checked : Flash memory is read-protected.

Developers forgot to set Read protection byte $\ensuremath{\mathfrak{S}}$

	Open fil	e +						
Address 0x8000	• 000	Size	0x10000	Data width	32-bit 💌	Find Data	0x	
Address			0	4		8	c	:
0x08000000		20000	400	0800E205	080	0DA11	0800DA13	âÚÚ.
0x08000010		0800D	415	0800DA17	080	0DA19	00000000	.00
0x08000020		00000	000	00000000	000	00000	0800DA1D	
0x08000030		0800D	A1B	00000000	080	0DA1F	0800DA21	.ÚÚ!Ú.
0x08000040		0800D	423	0800DA25	080	0DA27	0800DA29	#Ú%Ú'Ú)Ú.
0x08000050		0800D	445	0800DA47	080	0DA49	0800DA4B	EÚGÚIÚKÚ.
0x08000060		0800D	A4D	0800DA4F	080	0DA51	0800DA53	MÚQÚSÚ.
0x08000070		0800D	455	0800DA57	080	0DA59	0800DA5B	UÚWÚYÚ[Ú.
0x08000080		0800D	A5D	0800DA5F	080	0DA61	0800DA63]ÚÚaÚcÚ.
0x08000090		0800D	465	0800DA67	080	0DA69	0800DA6B	eÚgÚiÚkÚ.
0x080000A0		0800D	A6D	0800DA6F	080	0DA71	0800DA73	mÚoÚqÚsÚ.
0x080000B0		0800D	475	0800DA77	080	0DA99	0800DA9B	uÚvÚÚÚ.


Physical flaws

OTHER MANUFACTURERS

CompX

- "CompX Security Company"
- US company, founded in 1903
- RegulatoR Series
 - Based on PIC16LF
 - User PINs, Technician PINs, Master PIN
 - Audit logging for some models
- Security
 - Code, Data, Write protection enabled ⁽³⁾

CompX Regulator Reg-SV3 (2016)

CompX tool

• Programming/Audit tool: Excel Spreadsheet

Keyless locking

now with Audit Trail!

Com**X** RegulatoR. AT

Programming RegulatoR AT

Programming must be done in ActiveTrack, a one-time download Excel spreadsheet (no need for proprietary devices); programming cannot be done at the unit

1) Connect the RegulatoR AT to the PC via USB cable (not included)

 Open the ActiveTrack Excel spreadsheet; this is where users and databases are programmed and managed

3) Connect to lock4) Begin adding users and PINs

 Each RegulatoR AT is capable of holding up to 20 unique codes (4 – 8 digits)

RegulatoR AT is easy to use

- Provides 1,500 event rolling audit trail
- Available in two versions _ self-locking featuring

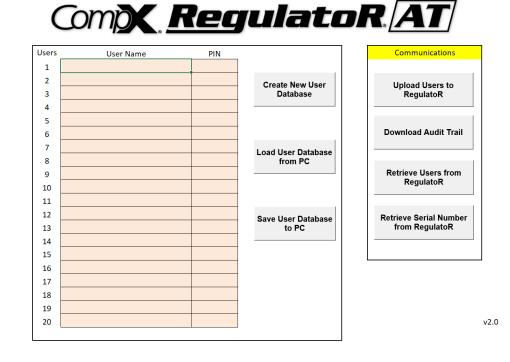
Download audit trail

- 1) Connect the RegulatoR AT to the PC via USB cable (USB A to micro USB; not included)
- 2) Click Download Audit Trail button
- 3) Save File As box will appear
- 4) Rename this file (if required) and choose the desired location and click Save

Minimum Requirements:

Windows 7 Microsoft Excel 2007 USB cable required (not included) for connection to spreadsheet

RegulatoR AT is easy to install

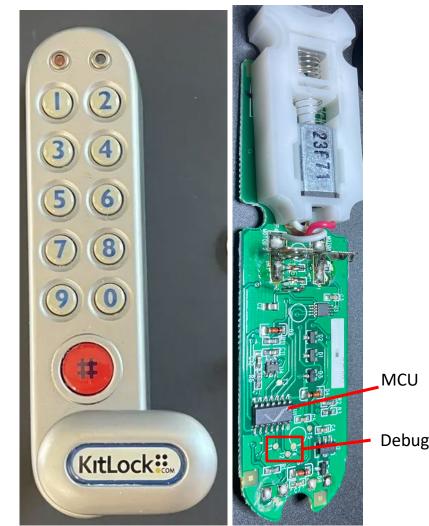

• Four different keypad configurations: left and right hand, vertical and top vertical

File Home Insert Page Layout Formulas Data Review View Automate Help Acrobat

PROTECTED VIEW Be careful—files from the Internet can contain viruses. Unless you need to edit, it's safer to stay in Protected View.
 Enable Editing

 \checkmark : $\times \checkmark f_x$

C3


(09 11.08.2024) DEFCON 32 – Dennis Giese, braelynn

Source:

https://compx.com/product/regulator-at-self-locking-left-hand-7-16-reg-at-s-l-1/

Kitlock

- Brand of Codelocks
- UK based, founded in 1991
 - Based on PIC16LF
 - User PINs, Technician PINs, Master PIN
- Security
 - Code, Data, Write protection enabled $\ensuremath{\mathfrak{S}}$

Kitlock KL1000

Noname RFID locks

- Cheap RFID locks on Amazon/eBay
- EEPROM and Mystery MCU
- No protection, plaintext RFID UIDs

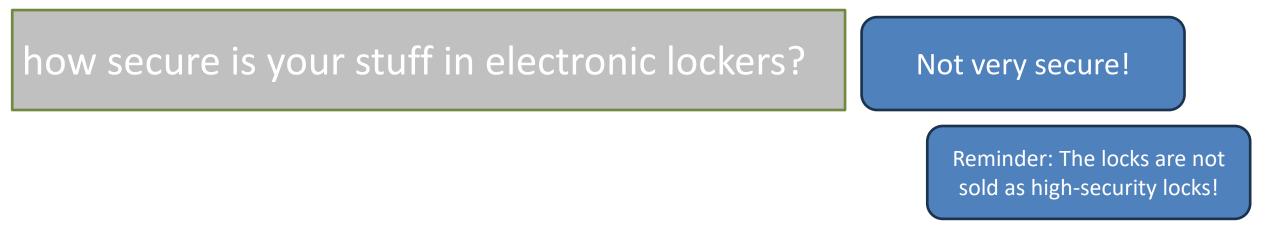
Offset	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
00000000	00	00	00	00	23	FF	FF	FF	04	4C	01	85	23	FF	FF	FF
00000016	04	3E	FE	75	3	FF	FF	FF	04	в0	1E	81	23	$\mathbf{F}\mathbf{F}$	FF	FF
00000032	00	00	00	00	23	FF	FF	FF	00	00	00	00	23	FF	FF	FF
00000048	00	00	00	00	23	FF	FF	FF	00	00	00	00	23	FF	FF	FF
00000064	00	00	00	00	23	FF	FF	FF	00	00	00	00	23	FF	FF	FF
08000000	00	00	00	00	23	FF	FF	FF	00	00	00	00	23	FF	FF	FF
00000096	00	00	00	00	23	FF	FF	FF	00	00	00	00	23	FF	FF	FF
00000112	00	00	00	00	23	FF	FF	FF	00	00	00	00	23	FF	FF	FF
00000128	00	00	00	00	23	FF	FF	FF	00	00	00	00	23	FF	FF	FF
00000144	00	00	00	00	23	FF	FF	FF	00	00	00	00	23	FF	FF	FF
00000160	00	00	00	00	23	FF	FF	FF	00	00	00	00	23	FF	FF	FF
00000176	00	00	00	00	23	FF	FF	FF	00	00	00	00	23	FF	FF	FF
00000192	00	00	00	00	23	FF	FF	FF	00	00	00	00	23	FF	FF	FF
00000208	FF	04	45	1E	Α9	23	FF	FF	FF							
00000004			-	-	-	-	-					-	-		-	-

DEMO

Example Scenario

- Assumption: Attacker has access to *any* open locker/cabinet
- Required tools: Debugger, Philips Screwdriver, Arduino/Flipper
- Goal: Clone Manager key, extract set user PIN/RFID UID

Demo


Find the recorded version of the demo here: <u>https://dontvacuum.me/talks/DEFCON32-locks</u>

CONCLUSION

Summary

- We can extract firmware and keys from Digilock/SAG locks
- Access to one lock can give you access to all (in one location)
- Cloning and emulating keys is possible
- Attacks do not require complicated tools and are cheap

Solutions

- Security-by-design from the beginning:
 - enable all security features, expect physical attacks
 - store secrets in a secure way
- Best solution for vulnerable locks: firmware updates for existing locks
- Problem: depending on age, existing locks likely unfixable
 - workaround: use programmer to enable code protection
 - only works if data is stored on the MCU
 - too complicated for average user (but might be solved by vendor)
- Likely: buy new locks or just ignore the problem

Take away lessons

- Do not re-use an important PIN for lockers/cabinets/safes
- Never loan your electronic keys
- Be aware about the security limitations of these devices
- Do not trust audit logs of devices
- Even experienced and big companies make mistakes
- Producing a high-security but cheap system is difficult
- There might be interesting cyber-physical systems around you

Do not forget the human factor! Just ask nicely for the key?

Final notes

- Please do not break into lockers you do not own!
- Messing with locks can permanently brick them
- There are more attacks that have not been covered here
- Other companies and products are vulnerable, too
 - Just because someone did not get hacked, does not mean that they are good

Special thanks: Cory Doctorow Tarah Wheeler Hannah Zhao Kurt Opsahl Andrew Crocker the legal team @EFF https://supporters.eff.org/donate/join-eff

AUKEY

Contact:

See: http://dontvacuum.me Telegram: https://t.me/dgiese Twitter: dgi_DE Email: dennis@dontvacuum.me hi@braelynn.io

Acknowledgements:

@Tihmstar
Shannon Assouline
Ben Helfrich
Sören Beye
Gene Stephens
@AapoOksman
Xenia
Guevara Noubir

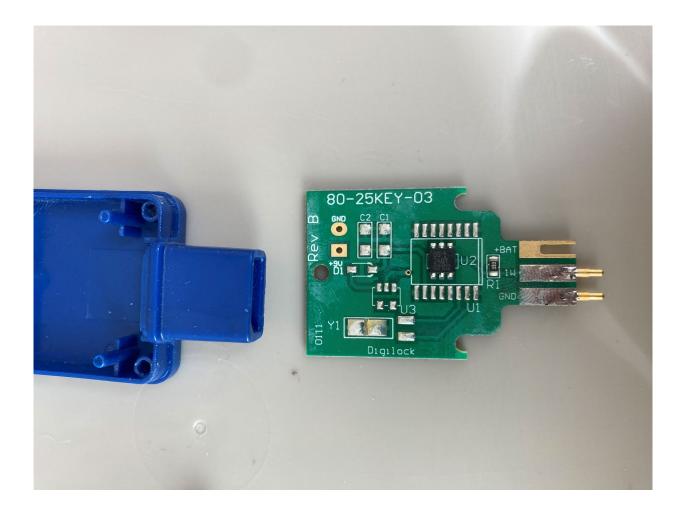
BACKUP SLIDES

Digilock full statement

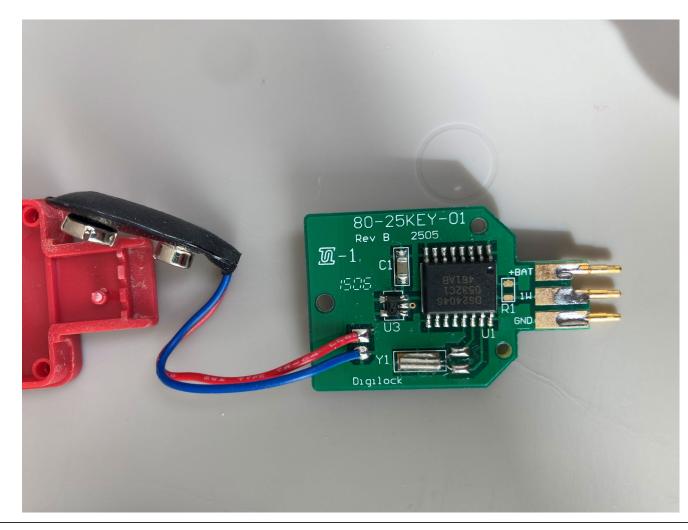
Digilock respects Mr. Giese's research. Prior to DEFCON, Digilock and Mr. Giese had communicated about code improvement for Digilock's products.

Additional security implementations by Digilock to further protect the code include:

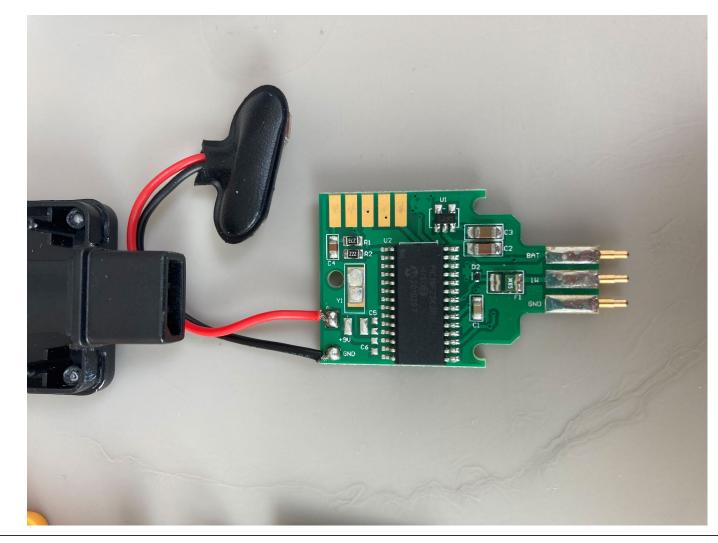
- Implementation of code protection on all data blocks to address issues mentioned in Mr. Giese's findings
- Preliminary changes made to implement code protection for all blocks (PIC18) and GSS (PIC24)
- Additionally, internal EEPROM on PIC18 read protection is enabled.
- Additional encryption is being implemented to ensure that key values are encrypted during communication. Even if raw key UID is acquired, communication checks will prevent the key from being cloned with this raw communication with the lock.
- EEPROM data encryption is being implemented to ensure that data at rest and in transit is encrypted. This encryption is being applied to models using PIC18 internal and PIC24 external EEPROM.

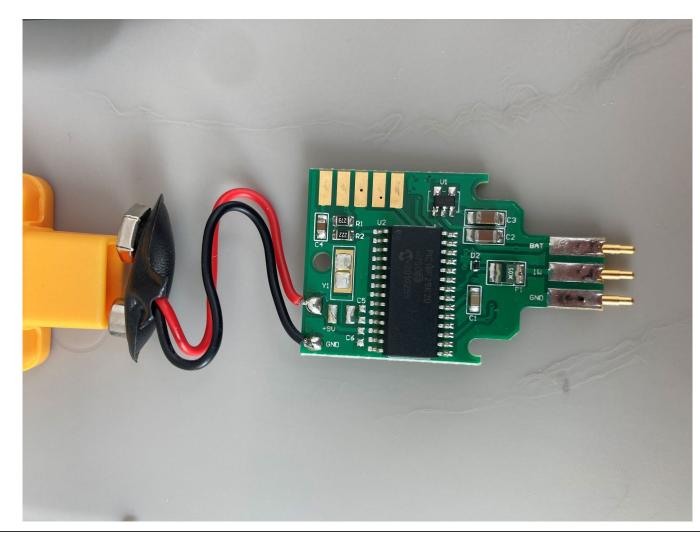

Digilock thanks Mr. Giese for delaying his DEFCON presentation a couple of days to allow Digilock and Mr. Giese more time to discuss such issues. Digilock and Mr. Giese hope to continue collaboration and improve lock security.

In over 32 years, there have been no reported instances of items being stolen because a Digilock lock was hacked, Digilock is fully committed to providing secure solutions for its customers.


Devices under test

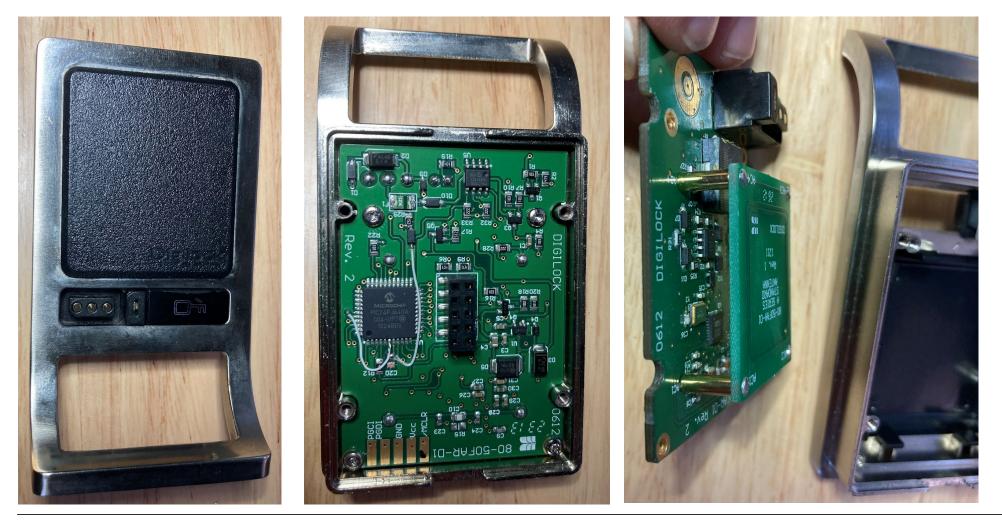
								Pin erased after	
Model	SKU	МСО	EEPROM	PIN/Key location	СР	DP	WP	unlock	Year
ADA Key	Digilock 80-25KEY-03	DS2401+ (Serial 0x01)		-	-	-		-	2019
RED Key	Digilock 80-25KEY-01	DS2404S(ROM 0x04 + Time)		-	-	-		-	
4G Prog/Mgmt Key	Digilock 80-35KEY-05	PIC18F25K20-I/SO		-	Y(1-2)	<u>N</u>	<u>N</u>	-	2020
5G Prog/Mgmt Key	Digilock 80-35KEY-10 0617	PIC18F25K20-I/SO		-	Y(1-2)	N	N	-	
Data Key	Digilock 80-35DAK-12 1119	PIC24FJ64GA004	ST 24256BRP, MC 23K256	-	N	N (EP)	<u>N</u>	-	
4G RFID	Digilock 8050FAR-D1 0612	PIC24FJ64GA004	24LC02BISN	EP	N	N (EP)	<u>N</u>	N	2015
Numeris Versa Mini	Digilock 80-56VMFK-10 0621	PIC18LF46K40/MV		MCU-Data	N	N	N	Y	2022
NEXT AXIS	Digilock 80-60SSFK-03	PIC18F45K20	ST 24256BF TTSOP8	MCU-data	Y(1-2)	N	N	Y	2018
NEXT CUE	Digilock 80-36FLS-05	PIC18F25K20-I/SO		MCU-data	Y(1-2)	N	N	N	2017
NEXT AXIS vertical	Digilock 80-61SNFK-03	PIC18F45K20	ST 24256BF TTSOP8	MCU-data	Y(1-2)	N	<u>N</u>	Y	2019
4G	Digilock 80-50FAK-D2 Rev 1	PIC18F25K20-I/SO		MCU-data	Y(1-2)	N	N	N	2018
LS100	300841	STM32F101R4T6	ST M95010WP	EP	N	N (EP)	N	N	2016
LS300	300843	STM32F071RBT6	ST M95256WP	EP	N	N (EP)	N	N	2018
LS400	300844	STM32F101R4T6	ST M95256WP	EP	N	N (EP)	N	N	2015
KL1000		PIC16LF1825		MCU-data	Y	Y	N	-	
Regulator Reg-SV3		PIC16LF1786		MCU-data	Y	Y	Y	-	
RFID lock		2112P?	AT24002	EP		N (EP)			

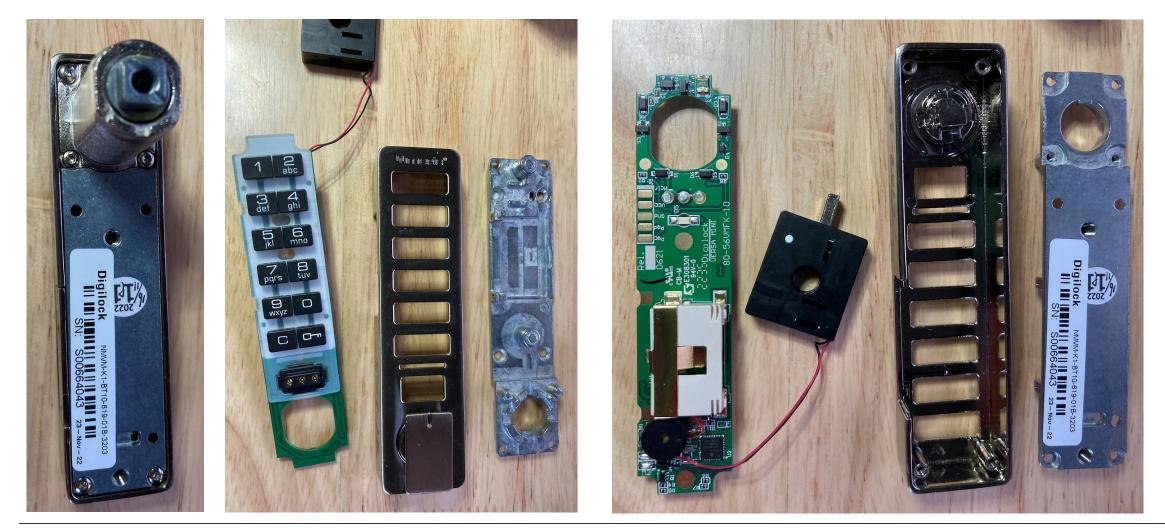

Digilock ADA Key


Digilock 3G Programming Key

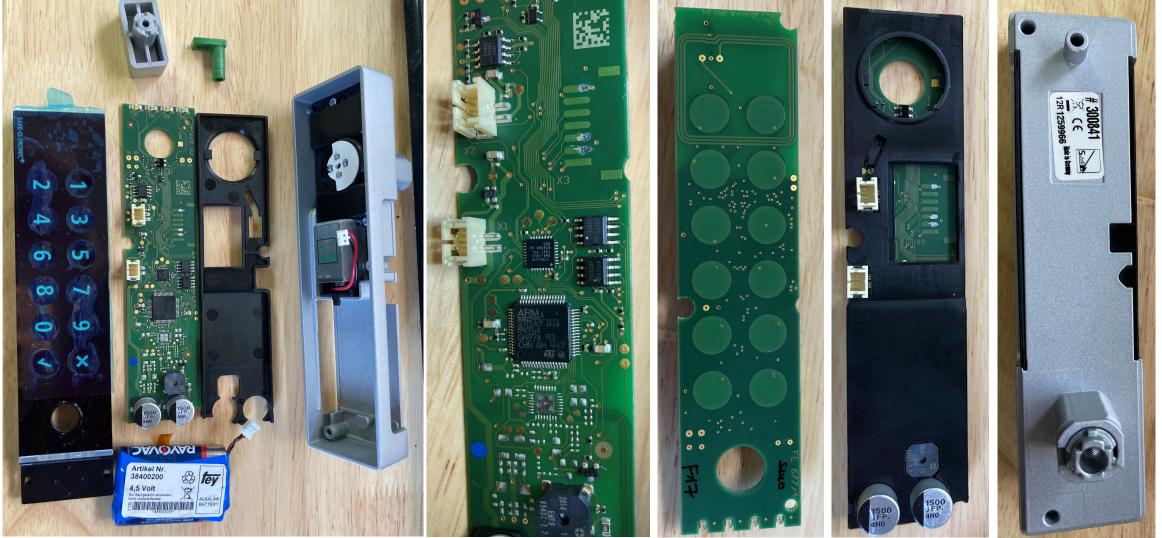
Digilock 4G Manager Key

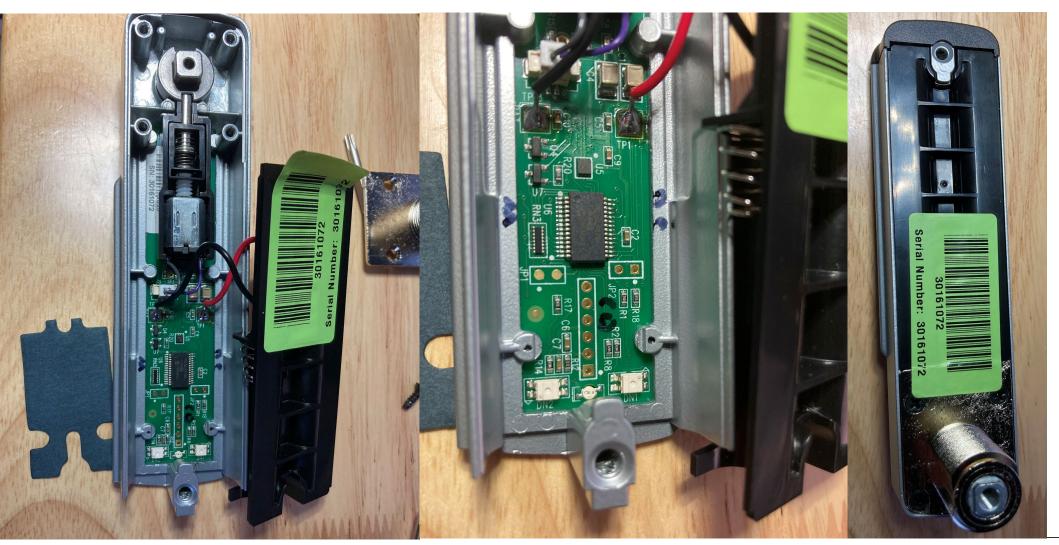
Digilock 4G Programming Key

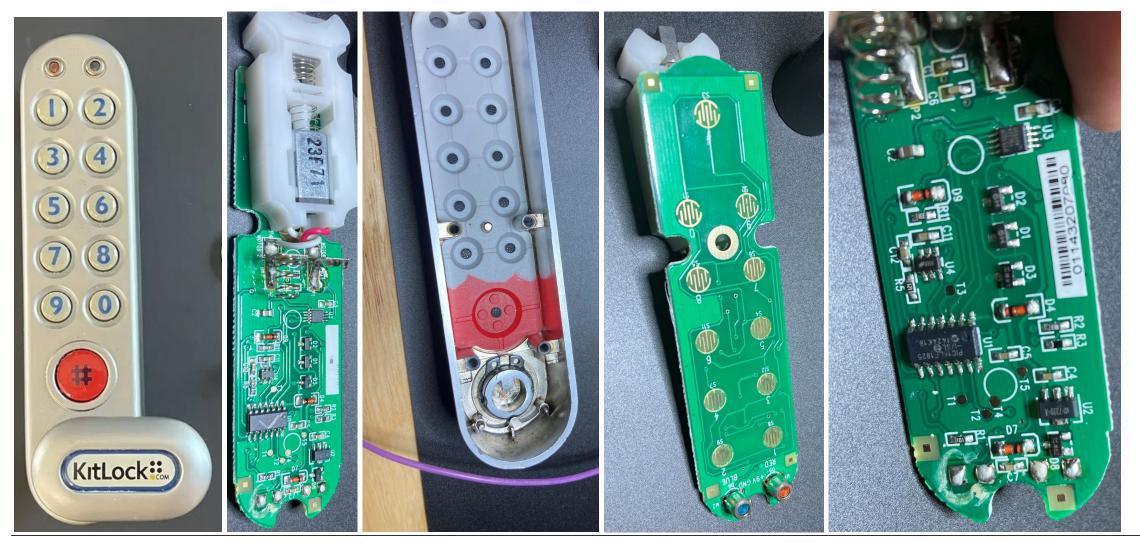

Digilock 5G Programming Key


Digilock Data Key

Digilock 4G RFID


Digilock Versa Mini


Digilock Axis/Cue/Axis/4G


SAG LS100

CompX Lock

Kitlock

