Amazon Echo Dot or the Reverberating Secrets of loT Devices

Dennis Giese
dgiese@ccs.neu.edu
Northeastern University

ABSTRACT

Smart speakers, such as the Amazon Echo Dot, are very popular
and routinely trusted with private and sensitive information. Yet,
little is known about their security and potential attack vectors.
We develop and synthesize a set of IoT forensics techniques, apply
them to reverse engineer the hardware and software of the Ama-
zon Echo Dot, and demonstrate its lacking protections of private
user data. An adversary with physical access to such devices (e.g.,
purchasing a used one) can retrieve sensitive information such as
Wi-Fi credentials, the physical location of (previous) owners, and
cyber-physical devices (e.g., cameras, door locks). We show that
such information, including all previous passwords and tokens,
remains on the flash memory, even after a factory reset. This is due
to the wear-leveling algorithms of the flash memory and lack of
encryption. We identify and discuss the design flaws in the storage
of sensitive information and the process of de-provisioning used
devices. We demonstrate the practical feasibility of such attacks on
86 used devices purchased on eBay and flea markets. Finally, we
propose secure design alternatives and mitigation techniques.

CCS CONCEPTS

« Security and privacy — Usability in security and privacy;
Systems security; Embedded systems security;

KEYWORDS
Internet of Things, privacy, forensics, reverse engineering

ACM Reference Format:

Dennis Giese and Guevara Noubir. 2021. Amazon Echo Dot or the Rever-
berating Secrets of IoT Devices. In Proceedings of Conference on Security and
Privacy in Wireless and Mobile Networks, Abu Dhabi, United Arab Emirates,
June 28-Fuly 2, 2021 (WiSec "21), 12 pages.
https://doi.org/10.1145/3448300.3467820

1 INTRODUCTION

Virtual assistant-based systems like Amazon Echo and Google
Home gained increasing popularity over the last few years, and
are expected to become more important in the future [2]. These
systems are used in daily life to control smart home environments,
order products, issue queries or organize someone’s life. Recent

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WiSec °21, June 28—July 2, 2021, Abu Dhabi, United Arab Emirates

© 2021 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-8349-3/21/06...$15.00
https://doi.org/10.1145/3448300.3467820

Guevara Noubir
g.noubir@northeastern.edu
Northeastern University

research analyzed the communications channel of such devices
revealing the potential for manipulation and privacy leaks [20, 35].
However, little is knows about their internal hardware/software
design, operation and privacy mechanisms due to the security pro-
tections put in place by the manufacturers. Furthermore, the first
Amazon Echo was released in 2014. Since then, several genera-
tions of products are integrating Amazons Alexa functionality. New
generations might encourage the users to retire older devices, sell
them, or give them away. Additionally, devices break over time
are discarded. Due to their nature, such IoT devices may contain
private information about the user, sensitive log files, and may even
give access to the user’s Amazon account. Before giving away or
discarding devices, it seems obvious that the owner needs to factory
reset their devices in order to delete all critical data. However, there
are users who are lacking technical knowledge to reset their devices
properly. For broken devices, this is not possible at all. Also, the
reliability of the factory reset is unknown. The user’s expects that
the vendor of such devices will try to protect private data.

In this paper, we develop and synthesize a set of hardware/software
techniques for mobile and embedded devices into a systematic
method for analyzing smart-speakers, and IoT devices in general.
We apply these techniques to reverse engineer and analyze the pri-
vacy risk of used Amazon Echo devices and the security measures
the vendor implemented. We purchased 86 used Amazon Echo Dot
devices over 16 months, from sources like eBay and flea markets.
Additionally, we analyzed new and “certified refurbished” devices.

While there are several Amazon Echo models, we focus on Echo
Dot’s as they are the most affordable and common devices. Our fo-
cus is on the third generation, released end of 2018. We analyse the
effectiveness of factory resets and investigate the implemented pro-
tections on user data. We show that private information, including
all previous passwords and tokens, remains on the flash memory,
even after a factory reset. This is due to wear-leveling algorithms of
the flash memory and lack of encryption. We identify and discuss
the design flaws in the storage of sensitive information and the
process of de-provisioning used devices. Additionally, we apply our
forensics techniques to other manufacturers and discover similar
vulnerabilities. These results can be found in 8. Therefore, demon-
strating that our method for reverse engineering will help other
researchers for reverse engineering a variety of IoT devices. Finally,
we propose secure design alternatives, and short-term mitigation
techniques effective against adversaries with hardware attack capa-
bilities. Our contributions are summarized as follows:

e Systematic and comprehensive reverse engineering of Ama-
zon Echo Dot hardware and software platforms.

e Data extraction techniques of user data even after factory re-
sets exploiting the hardware architecture, lack of encryption,
and side effects of wear-leveling.

e Demonstrating the feasibility of breaching the users privacy
by reconnecting used devices to the cloud.

https://doi.org/10.1145/3448300.3467820
https://doi.org/10.1145/3448300.3467820

eMCP IC

SoC
MediaTek
MT8516B

il

LED driver
IS31FL3236

Stereo ADC
0 TLV320ADC3101

Stereo ADC
0 TLV320ADC3101

Figure 1: Echo Dot 3rd Gen logical schematic

eMMC flash

4

il

e Providing an advanced method to instrument access to eMCP
flash without repeated soldering.

o A privacy-preserving study of 86 used devices revealing most

users do not adequately reset their devices.

Responsible disclosure to Amazon

Generalization to findings to other smart speakers.

Mitigation and discussion of trade-offs between usability,

security, and hardware requirements.

2 THE AMAZON ECHO PLATFORM

While Amazon sells several models of Echo devices, the underly-
ing hardware and software platform remains unchanged to a large
extent. We decided to focus on Amazon Echo Dots due to their
popularity and ubiquity in homes. Their main distinguishing char-
acteristic is the lack of display or advanced user interface. Instead,
the user interaction is through buttons, LEDs, and voice input and
output. Our hardware teardown and software architecture analysis,
of over 98 used and new, Echo Dot devices reveals the following.
SoC/CPU: The central component of Amazon’s Echo Dots is the
System on a Chip (SoC). Third (3rd Gen) generation devices rely
on Mediatek MT8516B SoC, which is a 64-bit quad-core ARM de-
vice. The MT8516B is designed specifically for voice assistant de-
vices [28]. The SoCs integrate ARM TrustZone support, a key hard-
ware component to secure ARM-based platforms, e.g., to provide
Secure Boot or store keys securely. There is little technical infor-
mation publicly available for these SoCs.

RAM and Flash Storage: In most of the analyzed devices, the
RAM and eMMC-flash are integrated in a single IC, the embedded
Multi-Chip Package (eMCP) (See Figure 2). The eMCPs come in
different models and are sourced from multiple manufacturers,
depending on the generation, availability and cost of chips. Known
vendors of eMCPs are Micron, Samsung and SKhynix. For Gen
3 (FCC ID: 2A0AG-3668), we found the size of the flash memory
varying between 4 and 8 GBytes. We also found that there is a
new PCB revision of generation 3 devices (FCC ID: 2ARIW-2778,
2ASD2-7483) with separate RAM ICs and raw NAND flash.
Connectivity and interfaces: Echo Dots have several communi-
cations and connectivity peripherals. They support Bluetooth and
dual-band Wi-Fi. Generation 3 devices use MediaTek MT7658CSN
ICs, combining Bluetooth and Wi-Fi. For interfacing, they integrate
LEDs, Buttons, ADCs, a microphone array, and speakers. The PCB
has USB and UART debug interfaces as test-points (See Figure 3).
Operating System: Echo Dots run Fire OS, which is a customized
Android operating system [10]. Generation 3 uses Android 7.1.2
(Nougat). The flash memory contains two copies of the Android

Figure 3: Back side of Echo Dot 3rd Gen PCB with position of USB Debug
pins (Yellow) and UART (Green)

root partition (active and passive copy), the kernel image and the
Trusted Execution Environment (TEE) firmware. The operating
system has SELinux enabled and in “enforcing” mode.

File systems: The Android operating system root partitions are
stored on an Ext4 file system, which is not encrypted, but integrity
protected by dm-verity. For the 3rd Gen devices, the operating
system uses around 800 MByte. The user data is stored on a separate
user partition which is formatted with Ext4. This partition is neither
encrypted nor integrity protected.

Manufacturer configuration: This is written onto the device at
manufacturing and is device-specific. We identified the special
“Boot2” boot partition that has the partition signature “beefdeed2.1”
and used as NVRAM. It contains the model number, product ID,
serial number, Wi-Fi MAC address, Bluetooth MAC address, and
region. This storage is also used for bootloader configuration and
control. It also contains Device Hardware Authentication (DHA)
credentials, which consist of a private key and a certificate. The
private key is stored in an encrypted form in the KeyBox (KB)
partition and is decrypted by a TrustZone application. The certificate,
which is signed by Amazon’s Device Certificate Authority (CA), is
stored in the “persist” partition in plaintext.

Secure Boot: Echo devices use the Android Verified Boot con-
cept [33]. On Power-ON, the Boot ROM (stored on the SoC) is the
first code to execute. It verifies and loads the Pre-loader from the
flash storage. The verification of Boot ROM integrity is done using
the manufacturer’s RSA public key. The hash of the public key
is burned in the eFuses of the SoC. This Pre-loader sets up the
basic hardware and does the first security checks. Then, it loads
the signed ARM Trusted Firmware (ATF), verifies and executes
it in TrustZone Exception Level (EL3). ARM’s 64-bits architecture
defines four exception levels (EL0-EL3) with increasing privileges
to access registers, memory, and hardware features. EL3 being the

highest and only level that can change security state. In this step,
the Little Kernel (LK) is verified and loaded into memory. The anti-
rollback protection is also performed in this step. It checks (e.g.,
Replay-protected-memory-block (RPMB)) the currently installed
version against the minimum expected version to prevent malicious
rollback to potentially insecure earlier versions. However, not all
analyzed devices utilize RPMB, as we noticed that RPMB can be
empty and not provisioned. In the next step, the LK verifies the
signed Linux kernel image and loads it. The Linux kernel then
mounts the root partition and ensures its integrity using dm_verity.
After boot, the serial connections are disabled. The access over
USB is limited as the bootloader is locked and no open services in
Android are listening on USB. We were able to observe and verify
the boot process by analysis of the boot log via UART.

Apps: The Fire OS core is similar to a standard Android OS. The
system contains standard tools as busybox, iptables, ipé6tables, logcat,
dnsmasq, hostapd and wpa-supplicant. Dnsmasq is used as a DNS
resolver. A list of DNS names and the respective IP addresses of
Amazon services is stored on the user data partition. Hostapd is used
to configure and deploy an unprovisioned device’s Wi-Fi access
point. WPA-supplicant is responsible for connecting to configured
access points after provisioning. We found that it creates its con-
figuration files on the user data partition in the folder “misc/wifi/”.
Here the file “wpa_supplicant.conf” contains the Wi-Fi credentials,
such as the SSID and PSK. If multiple wireless networks are con-
figured, we discovered that this file stores all of them. In the same
folder, there is the file “networkHistory.txt” which contains a logfile
of all connections to wireless networks, including the BSSID (MAC
address of the Wi-Fi AP). This file can also contain a list of surround-
ing Wi-Fi APs including their BSSID, frequency and signal strength.
Copies of the “wpa_supplicant.conf” and “networkHistory.txt” can
be also found in the free space of the EXT4 file system.

The logical functionality of the device is implemented using An-
droid apps. Their purpose ranging from connectivity apps to device
management, telemetry, cloud interaction and voice recognition.
The system partition contains basic voice models for the wake-up
word detection, but user-specific voice models are stored on the user
data partition in the folder “data/securedStorageLocation/models”.
We noticed that these models may differ for different owners of
devices. We found the usage of “Pryon” framework in the wake-
up word detection [6]. Here the speech is converted to text and
matched against a list of regular expressions.

The device often uses SQLite on the user partition for storing
user data. Fire OS uses the Android Account Storage and some
user information, e.g., the owner name is stored in “accounts.db”
and “0.xml” located in “system/users/0/”. The device identity and
token for Amazon Device Messaging [11] are stored in the folder
“com.amazon.device.messaging”. The central storage for log files is
“data/system/dropbox”, including kernel, event and debug logs.
Provisioning process: An unprovisioned device will enter the
setup mode after booting up. This is indicated through a rotating
yellow light ring on the device and by the announcement to use
the Alexa app to set up the device. At this point, the device has
created an open Wi-Fi access point with a unique SSID in the form
of “Amazon-XXXX”. The user is asked to open the Alexa app to
log into the Amazon Account and enter the credentials of user’s
home Wi-Fi. The devices only support WPA/WPA2 PSK for private

customers. The app then connects to the open configuration Wi-Fi
access point of the device and transmits the credentials. The device
then connects itself to the assigned Wi-Fi network and to the cloud.
If the connection succeeds, the device appears in the owner’s Alexa
app and can be configured from there. Upon provisioning firmware
updates are installed automatically. By default, the Wi-Fi creden-
tials are also uploaded to the Amazon Cloud. To prevent this, the
user needs to actively opt-out in the setup process. Echo devices
also support Amazon Zero-Touch Setup, which is also called Wi-Fi
simple setup [9]. Here, the device is linked in the cloud backend to
the owner’s Amazon account at the time of the purchase. The re-
quirement for this is an already existing and active Amazon device,
the provisioner devices, in proximity. This device does not need
to belong to the same owner. When the device is powered on for
the first time, it will try to connect to a hidden Wi-Fi SSID of the
provisioner device and connect through it to the Amazon backend.
Using this channel, it will configure its Wi-Fi access and connect
to Amazon cloud. The configuration is done over a secure channel
which is protected by usage of the DHA credentials [12]. As the
DHA credentials are protected by TrustZone and are used for the au-
thentication, an impersonation of the device or Man-in-the-Middle
(MitM) attack is not trivial.

Unprovisioning process: Amazon Echo devices can be reset via
the Alexa app, Amazon website, or device. In the app or website,
the user selects the device and issues a factory reset command. This
de-registers the cloud binding and issues a factory reset command
to the device. If the device is connected to the Internet, it reboots
and performs a reset. After this, the device will be in setup mode
ready for provisioning.

A user also has the possibility to reset the device locally by press-
ing buttons in a certain sequence. The exact buttons and sequence
differs between generations. 3rd Gen devices require the press
of the “Action” button for 25 seconds. The devices will signal the
process by turning the light ring orange. In our tests, we noticed
that the device enters the “setup mode” after 10-15 seconds and
turns the light ring orange. However, it did not trigger a factory
reset, but instead a Wi-Fi reconfiguration. While the device was in
Wi-Fi reconfiguration mode, a power off and power on would re-
connect the device to the network again without actually resetting
it. This behavior misleads users to believing that the factory reset
is successful and release the buttons too early.

Depending on whether the device is connected to the Internet,

a local factory reset will de-register the cloud binding. A device
reset without an Internet connection, e.g., outside of the configured
Wi-Fi, will remain associated to the user account and the cloud
binding won’t be de-registered. A user need to manually delete the
association of a device over the Alexa app or Amazon website. This
can be problematic as detailed in section 5.3.
Vulnerabilities: To this day there were no vulnerabilities or root-
ing methods reported for Amazon Echo Dots (2nd and 3rd Gen) [4].
However, there are public root methods for other Amazon devices,
like the Fire tablets [3][5][8]. These methods abuse a vulnerability
which enables to replace the LK with a modified version and still
pass the verification process. We found the same exploits and meth-
ods can be likely adopted using eMMC access for Amazon Echo
Dot devices as they use the same SoC and similar firmware.

In future research this can be analyzed as a way to potentially
bypass the Secure OS boot process and execute modified software.

3 NAND/EMMC FLASH FORENSIC

We first provide an overview of various flash-based storage sys-
tems and their key characteristics, then present the techniques we
developed for data extraction from Echo Dot. We assume access
over the device software itself is not possible.

3.1 Overview of Flash-Based Storage

Flash memory is widely used in embedded devices as non-volatile
memory because it provides an easy way to store data on a small
area and due to its power efficiency. Flash generally comes as NAND
or NOR flash [36]. For IoT, and more general, embedded devices
usually NAND flash is used due to its cost and high density. NAND
flash can come in different packages and types.

NAND characteristics: NAND flash is typically organized in planes,

blocks and pages. A page is the smallest unit and typically has a
data size of 512 Bytes for 1 Gbit to 4 Gbit NAND flashes, and 2048
Bytes and more for bigger sized flashes. In addition to the data size,
the page contains also a “out-of-band” (OOB) area which is used
for management and error correction codes (ECC). Primary usage
of the management is wear-leveling and bad block management.
Multiple pages are organized in blocks, for example, a block can
contain 64 to 256 pages. The exact number of pages per block and
size of the OOB area are vendor- and flash- specific. NAND flash
has a typical endurance rating of 100,000 writes per block. NAND
flash by nature is a fast and cheap storage solution but is also un-
stable [19]. Reads and writes produce bit errors which need to be
corrected by ECC. NAND flash is written to at page level. To be
able to write to a page, it needs to be empty. A page is empty, if
all physical bits are set to “1”. In order to erase data, NAND flash
requires the whole block to be erased. The process of erasing NAND
flash has implications for wear-leveling. Instead of deleting a block
every time information on a page being changed, the information
is written to a new block and the old page is marked as invalid.
This spreads the wear over the whole flash over time. However,
the actual information still remains in the page. This data might
get deleted at some point by the garbage collection of the flash
controller. This behavior prolongs the life of the flash memory but
creates the issue of the secure deletion of sensitive data. The general
problem of data remanence has been known for a long time [24].

Unmanaged NAND: The simplest type of NAND flash is unman-
aged NAND, which can also be called raw NAND flash. Standards
describe features, interfaces and packages [23]. The management is
done by using a Flash Translation Layer (FTL) in the OS as part of
the SoC itself. The FTL takes care of the wear-leveling, ECC, and
bad-block management. The exact implementation depends on the
used controller and can be delegated to the OS. The controller is
connected to the flash by 8 or 16 data lanes, and typically 7 control
lanes. Unmanaged NAND flash is usually cheaper. Due to its con-
nection, the SoC or OS can access the raw pages of the flash. The
connection between SoC and NAND IC is illustrated in Figure 4a.
Managed NAND: Another kind of NAND flash is managed NAND.
In the context of embedded devices typically Embedded Multime-
dia Card(eMMC) and Embedded Multi-Chip Package(eMCP) ICs are

NAND IC eMMC IC

NAND flash

st

NAND flash

[HURTNL]

N/

MediaTek SoC

MediaTek SoC

(a) Unmanaged flash (NAND) (b) Managed flash (eMMC)
Figure 4: Comparing the connection between raw NAND and eMMC flash

used. eMMC ICs typically use FBGA-153 packages, while eMCP use
FBGA-221. eMCP ICs are a combination of eMMC flash with DRAM
on one chip, reducing the number of parts on the PCB. By eMMC,
we will denote both eMMC and eMCP ICs. In contrast to unmanaged
NAND, eMMC ICs contain a flash controller embedded on the chip,
which acts as an interface between the SoC and the NAND flash.
This controller takes care of the wear leveling, ECC, and bad-block
management internally. The supported features of eMMC memory
itself are defined in the JEDEC standards. For eMMC ICs which
support the eMMC standard 4.4 and newer [13], the wear leveling
mechanism offers features as TRIM, Discard and Background. These
features improve the performance of the flash and effectiveness
of the garbage collector [16]. Additionally, the standard defines
security features like Secure Trim, Secure Erase and Replay Protected
Memory Block (RPMB). Version 4.5 of the eMMC standard intro-
duced the Sanitize command for secure data removal [14]. All of
eMMC flashes we encountered supported at least eMMC version 4.5.
Interestingly, none of the devices used the Secure Trim or Sanitize
functions. The electrical interface between SoC and eMMC is also
defined in the JEDEC standards and consists typically of 2 control
lanes and 1 or more data lanes [14, p. 189]. A connection between
SoC and eMMC ICs is illustrated in Figure 4b. In our analysis, we
observed the actual implementation of the controller features and
flash management being highly depending on the manufacturer
and model of the IC. However, no managed NAND exposes the raw
NAND flash to the SoC or host directly.

NAND Forensics: Direct access to unmanaged NAND flash is stan-
dardized and tools are available. However, the interpretation of the
data requires knowledge about the used wear-leveling mechanism,
ECC and XOR method [30].

The mechanism might be different even for the same NAND IC
as it is dependent on the type of the used FTL. There are methods
to identify the used ECC [39] and XOR method [37].

For eMMC flash the controller prevents direct access to the (physi-
cal) raw flash. In contrast to unmanaged NAND the access to the
logical information does not require any additional knowledge
about the flash management, as the eMMC controller manages it
transparently. Most eMMC ICs have test pads, which bypass the

Figure 5: Pin layout of Hynix BGA221 eMCP ICs, with DDR RAM (red),
eMMC (yellow) and NAND test pads (blue)

controller [34]. This access method is used by commercial compa-
nies and tools to recover data from eMMC flash. Examples for the
layout of pads of an eMCP IC can be found in figure 5.

For extraction and analysis, we use different methods, depending
on the reset state of the device. For devices that have not been
factory reset, we can use the In-System-Programming (ISP) method.
Otherwise, we use the Chip-Off method, which is more invasive.
Additionally, we developed an advanced Chip-Off method.

3.2 Data Extraction using ISP

It is not necessary to remove the eMCP IC when the device is still
provisioned. Instead, it is possible to access the flash using test-
points and traces, a method widely used for In-system programming
(ISP). To be able to use the method, it is required that we reverse
engineer the PCB to find points where to attach to the flash signals.
The schematics of the PCBs are not public. By removing the eMCP
IC and the SoC, we identified the traces for CMD, CLK and DATO.
While they are easily accessible and known for Gen2 devices [25],
the DAT lines for 3rd Gen are using buried vias and were not
published yet. Buried vias are more difficult to trace and to access.
We developed a method to access that line using a conductive needle.
For access to the flash it is not required to find all DAT lines. Instead,
DATO is sufficient [14, p.8] [21]. In order to use the ISP method, it
is required that the SoC is kept in a reset state to not interfere with
the eMMC access. This can be achieved with various methods, we
chose to connect the crystal to the ground. This disables the clock
for the SoC and stops the SoC. The Vias for DAT lines are shown
on Figure 6. Figure 7 shows the position for the test points of CMD
and CLK. We can access the flash memory without removing any
chip by only using conductive needles.

Crystal _

Figure 6: ISP points for Echo Dot 3rd Gen on PCB front side
3.3 Chip Removal and Re-soldering (Chip-Off)

The NAND interface pads of an eMCP IC are not used and not
connected for normal operation. Therefore, they are not accessible

(51 CMD s == V2

£ @@ 18)
(=]
™

p- 3

=
o]

L

LK

]
- -
- -

Figure 7: ISP points for Echo Dot 3rd Gen on PCB back side

when the chip is soldered to the PCB. It is required to detach the
chip from the PCB to use an external adapter to dump its contents.
This process is similar to traditional flash forensics [15].

This process takes around 20-30 minutes per device, in addition
to the time needed for data retrieval. Every time when an event
occurs, e.g., when the device performs a factory reset, this needs to
be monitored and the process needs to be repeated. The reballing,
placement and soldering of the IC requires precision, as the correct
connection of the RAM is required for the operation of the device.

3.4 Hybrid Chip-Off for eMCP

One disadvantage of the Chip-Off method is that the removal of
remaining solder potentially causes damages to the solder-mask of
the PCB or eMCP IC. Additionally, both components are exposed
to thermal stress in the process. With every iteration the risk of
breaking PCB pads or creating shorts under the IC increases. It
is difficult to keep the eMCP chip externally, as DRAM has strict
requirements for the electrical interface and signaling quality. An
external eMMC chip is possible, however, the RPMB used by some
devices, prevents the use of a replacement chip in such cases.

We developed a method that allows us to repeatedly access the
contents of the flash without soldering every time. For this, we use
a donor eMCP chip for the RAM and we use the eMMC portion of
the original eMCP chip externally. As a preparation, the original
eMCP chip is removed and the eMMC portion of the pads on the
PCB are masked. Then the donor eMCP chip is soldered onto the
PCB. The masking prevents that the eMMC portion of the donor
chip is electrically connected to the SoC. We use an adapter for
the original eMCP chip and connect the eMMC pads via the previ-
ously described ISP points. The connection is illustrated in Figure
8. This method enables us the easy observation of data which have
been written through the eMMC interface and its representation in
raw NAND. The risk of damaging components in each iteration is
minimized. This method is faster in comparison to the traditional
chip removal. Additionally, this method is very powerful as the
communication between the SoC and eMMC can be intercepted
and even modified. This can be beneficial for future research with
IoT devices which use eMCP ICs.

3.5 Reading raw NAND from eMMC/eMCP ICs

Reading data from raw NAND of eMMC/eMCP ICs can be very
challenging as the implementation of the controller defines how
the data is stored on the flash memory. The manufacturers of ICs

Donor eMCP IC
(internal)

Original eMCP IC

Figure 8: Hybrid Chip-Off method

do not publish any information about the internal functionality or
the layout of the chips. No universal standard seems to exist for
controllers to manage the data. For instance, we encountered data
that has been scrambled using an XOR operation with an unknown
pattern by the controller. Furthermore, the exact method of logical
to physical addressing is unspecified.

The first challenge is to connect to the raw NAND by bypassing
the controller. We used a logic analyzer to find the pin-out and
applied observations about the behavior of generic NAND from [30].
At power on the controller runs several operations on the NAND
flash. The first operation is “ID Read”, which is a standard operation
and returns the 5 Bytes long NAND ID code. By observing this
operation, it is possible to distinguish the control pins (CLE, CE,
WE, ALE, RE) and most of the IO pins. The pads we found for
Hynix eMCP ICs can be found in Figure 9.

The second challenge is to determine the geometry of the NAND,
such as the page and block size. Some of this information is available
online, like in the Linux MTD subsystem documentation [1]. For a
unknown geometry, we determine the page size by first assuming
a big page (e.g., 20 KBytes) and then read a few pages. Each of
these pages likely contains multiple pages. By aligning distinct
structures, like the OOB area, it is possible to determine the page
size. The entropy of the OOB area is noticeably lower in comparison
to random data. The same approach can be used to determine the
block size and the number of blocks. For this paper, we only want
to detect the presence of information, therefore we ignore the error
correction and the exact addressing of the data.

The last challenge is the unknown XOR pattern. The exact XOR
mechanism depends on the manufacturer. For the analyzed ICs
it was not publicly available. Our approach was to fill the flash
with zeros multiple times over the eMMC interface. Additionally,
we changed a single bit in a block of zeros which had the size
of a page and filled the flash with it. The goal is to ensure that
as many pages as possible are filled with zeros. Later we would
revert the changed single bit. In case of Hynix eMMC the resulting
flash dump could be used as the XOR key in order to unscramble
data contents of other dumps. While this method worked for the
Hynix eMMC, it may not work for other vendors and models. A
more efficient, but more complex approach consists of extracting

the eMMC controller firmware and the scrambling keys [15, 39].

However, such an approach is out of scope of this paper, as it is not
necessary to reach our objective.

4 EFFECTS OF WEAR-LEVELING

In order to analyse the effectiveness of factory resets, we needed

to estimate the likelihood that a particular information is deleted.

= = O 2 = =2 =2 = o =2 2 20 O
<]
g RES 22232 $8g8g¢E

OO
0/0/0/0/0/0/0/0,00/00,0/0/0/000,0000@

Figure 9: Hynix eMCP NAND test pads

4

We developed a method to estimate the probability that a piece of
information is still present after deletion or factory resets. The goal
was to replicate the behavior of the analyzed devices.

Selection of IC: We chose the eMCP which we found most fre-
quently in 3rd Gen devices. We are aware that different models
and versions of flash might behave differently. The eMCP “Hynix
H9TQ32A4GTMCUR-KUM” is an IC which combines 4 GBytes
DDR3-RAM and 4 GBytes eMMC flash in a BGA-221 package. The
page size of the flash is 9040 Bytes. One block consists of 256 pages
and the flash has 2112 blocks in total. The boot areas, the RPMB
and the user area contain 3825672 KBytes in total. The raw NAND
equals 4773120 KBytes in size, which includes the OOB area. For
our experiment, we used new ICs, which were initially empty.
Creation of a test image: We assumed that the typical Wi-Fi cre-
dentials are smaller than 512 Bytes. For our experiment, we have
chosen a size of 310 Bytes for an example wpa_supplicant config-
uration with valid Wi-Fi settings. As the base image we used a
copy of an Amazon Echo Dot 3rd Gen’s flash memory, where the
data partition (1.5 GBytes) was zeroed. We assume further, that a
device cannot delete the non-user data partitions, e.g., system or
bootloader. All non-user data partitions combined have a size of 2.2
GBytes in total, 0.6 GBytes being empty (filled with “00”).
Process of writing and erasing: In order to keep track of infor-
mation, we created flash dumps after every step. These dumps
consisted of the data in the raw NAND and data which was ac-
cessed via the eMMC interface.

Using blank eMCP ICs, the base image was written to the chip.
An initial dump was created. Then the data partition was initially
formatted with “mkfs.ext4”, followed by another dump. The drive
and file system caches have been disabled. To detect data, we used a
similar approach as in [26, p.49 ff] and [38]. A unique pattern of 310
Bytes was written in 100 new files. These files are defined as “static”.
After each file 1 MByte of random data was written in another file
to ensure that the unique pattern is spread over multiple blocks.
This should also simulate the other files which are usually stored
on the data partition.

In a second step 100 additional files were created . This time these
files were modified and an additional line with a pattern was added.
This simulates the wear-leveling in case of modification of files, like
changes of configuration files. These files are defined as “dynamic”.
After the creation of the test files, a dump was created, which acted
as the baseline for the following experiments.

To simulate a factory reset, the data partition was formatted under
Linux with “mkfs.ext4”. The raw NAND and eMMC dump was
compared to the baseline. Then, in every iteration 200 files with 1
MByte size were written to the data partition, while the existing
files were deleted. After each iteration a dump is created. Between
iterations, the chip remained powered on for 15 minutes in order
to give time for the garbage collection algorithm of the controller
and to replicate a life-cycle of a device.

After completion of the experiment, we counted the remaining

T
1007 —« S (NAND)
z —+ D (NAND)
[}
% 80 |- -
o
k=)
a 60 |- -
>
g
S s |
=
g
«
E 20| y
o~
N
0 | | i
0 1 2 3 4

Written random data [in GByte]

Figure 10: Remaining patterns after appending random data, with reading
via direct NAND interface (averaged)

unique patterns in each dump by using fuzzy matching. Due the
nature of NAND flash individual bit errors are likely and by ignor-
ing ECC, the tool needed to be tolerant to bit errors. Additionally,
we repeated each NAND flash dump multiple times to further in-
crease our accuracy. We verified the non-changed partitions in each
iteration over the eMMC interface and made sure they were not
changed. The results of our experiment are shown in Figure 10.
Interpretation: Erased data continues to exist in the raw NAND
flash for a long duration. Multiple copies of patterns could be found,
especially for the “dynamic” files. This can be explained by the
wear-leveling mechanism which tries to avoid erasure of blocks.
TRIM and Discard being enabled seem not to ensure that data gets
deleted. We noticed that the garbage collector does not immediately
delete blocks with erased data. The amount of deleted blocks in-
creases over hours when the device is idle, but it is not deterministic.
This behavior is especially problematic for factory reset devices,
as the previous owner would power off the device shortly after
the reset, meaning garbage collection likely has not yet erased all
the private data. Our experiments match the observations for SSDs
in [38] and [29]. We conclude that formatting the file system and
overwriting it with random data does not reliably delete the data
from the physical flash.

5 ATTACKING USED ECHO DOT DEVICES

Our attacks on Echo devices require physical access. In our attacker
model the attacker can get physical access to a device by obtaining
a used device, e.g., by purchasing them on eBay or flea markets,
or by finding broken devices in the trash. The attacker does not
need sophisticated tools or knowledge. The required tools can be
obtained for less than 100 USD, which however only allows the
extraction of still provisioned devices. As devices can be resold after
the extraction, the attack will be financially neutral. The data can
be used by the attacker for various crimes (e.g fraud) or used for
pranks. Also, such data can be collected and sold, e.g. to malicious
persons in a particular region or proximity of a victim.

5.1 Availability of used devices

There are many different sources for used devices. An attacker can
obtain used/broken devices locally, e.g. by e-waste or flea markets.
Another source are eBay or Facebook market place. We observed
the availability of used devices on eBay over multiple months in
2020 and 2021. Each week 300-400 used devices were offered on the
platform in North America. The amount of “broken” or “for parts’
devices varied between 10-30 per week. Due to the implementation
of Facebook’s market place, it is difficult to determine the exact
number of offerings. However, the number was in the thousands.
Obtaining devices by mail has the advantage, that the senders name
and address might be known to the attacker.

5.2 States of used devices

Used or broken devices can come in different states, which have an
implication of at risk information.

(State 1) Device not reset and still connected to the cloud: In
this state the device was not reset by the previous owner and still
has existing cloud binding. The Wi-Fi credentials are still present
on the device and the data partition contains pieces of the previ-
ous owner’s information. The account owner can see the device
in the Alexa app. If this device can be connected to the Internet, it
will have access to the previous owner’s Amazon account. For an
attacker this is the best scenario, as it offers them the broadest and
easiest access to a victim’s data.

(State 2) Device not reset, but cloud binding deleted: This state
is similar to the previous one, however here the previous owner
deleted the device in the Alexa app. While the device still contains
the Wi-Fi credentials and other private information, the cloud bind-
ing is invalid. If such a device gets connected to the Internet, it will
not have access to the previous owner’s Amazon account.

(State 3) Device reset, but cloud binding still exists: This sce-
nario is rare, as it requires that the device reset happened while the
device did not have an active Internet connection. The data parti-
tion was wiped, but the Amazon cloud is not aware that the device
has been reset. When restoring this information, the device can be
reconnected to the cloud and to the previous owner’s account.
(State 4) Device reset and cloud binding deleted: When a de-
vice is reset and has an active Internet connection, the cloud binding
will be invalidated. If an attacker can restore the information on
the device, it is not possible to access the Amazon account. Other
information can be still extracted but that requires more effort.
(State 5) Device was never used: If a device has never been used,
it does not contain any private information. Devices that are still
sealed or have never been powered on can be sold as “used”. This is
the worst scenario for an attacker, as there is no data to gain. How-
ever, if the device was linked to a victims Amazon account when
purchased and it can be provisioned using Amazon Zero-Touch
Setup, the attacker could have a fully provisioned device.

5.3 Extraction of data of Echo devices

In preparation for the case study, we provisioned ourselves 6 new
Amazon Echo Dot devices with test accounts at different locations
and different Wi-Fi APs. Over a period of multiple weeks, we used
these. We paired different smart home and Bluetooth devices with
the provisioned devices. Directly after this period, we disassembled

the devices and extracted the flash content. For these provisioned
devices we confirmed that the data was accessible, and we could
retain the Wi-Fi credentials. To test our assumption regarding the
cloud connection, we moved the reassembled device to a different
location and created a Wi-Fi access point with the extracted cre-
dentials. Our assumption was, that the device would not require an
additional setup when connected at a different location and Wi-Fi
access point with a different MAC address. We confirmed that the
device connected successfully, and we were able to issue voice com-
mands to the device. When asked “Alexa, Who am I?”, the device
would return the previous owner’s name. The re-connection to the
spoofed access point did not produce a notice in the Alexa app nor
a notification by email. The requests are logged under “Activity”
in the Alexa app, but they can be deleted via voice commands. We
were able to control smart home devices, query package delivery
dates, create orders, get music lists and use the “drop-in” feature.
If a calendar or contact list was linked to the Amazon account, it
was also possible to access it. The exact amount of functionality
depends on the features and skills the previous owner had used.
Before and after a factory reset the raw NAND flash was extracted
from our provisioned devices using the Chip-Off method. Addi-
tionally, we created a dump using the eMMC interface. To find
information in the resulting dumps, we had to develop a method to
identify interesting information.

5.4 Identification of information

As we provisioned the devices ourselves, we knew what kind of
information the device could potentially store. We created a list of
keywords which would be used to look for this specific information.
We divided the keywords in four different categories: information
about the owner, Wi-Fi related information, information about
paired devices and geographical information. The individual key-
words per category can be found in Table 1.

The dumps of the flash were searched for the keywords. On the

pre-reset and post-reset eMMC image we used the forensic tool
Autopsy, which supports keyword search on images [7]. The NAND
dumps were analyzed manually. The name of the Amazon account
owner was found multiple times. In all analyzed devices multiple
complete copies with contents of the “wpa_supplicant.conf” file
were found. The number of found artifacts varied between 22 and
37 copies. Additionally, we found artifacts of log-files in raw NAND
and the eMMC dump. We confirmed that the EXT4 data partition
has been deleted. All artifacts were spread over the NAND flash
and were not stored at the same location.
By obtaining the positions of the keywords, we identified the files
and places where privacy related information is stored. For example,
we observed that we would find Wi-Fi credentials close to strings
like “ssid=". Having this information enables us to detect the pres-
ence of information in unknown memory dumps in an automated
way. This is important to automatically analyze real users’ devices
in a privacy-preserving way as discussed later.

5.5 Retrieval of address via voice commands

While we found out that it is not directly possible to ask Alexa
for the previous owner’s address, we were able to find the approx-
imate location by asking indirect questions. When asked about

restaurants, Alexa will return restaurant names, addresses and dis-
tances in proximity of the address. The same applies to grocery
stores, post offices, public libraries, public transport stops and other
locations. Using this information, it is possible to narrow down
the approximate position. In experiments in city locations (100.000
residents) we were able to get an accuracy of approximately 150
meters. The best estimation was possible if Alexa has been asked
about nearby grocery stores. We expect that the accuracy might
differ for different types of areas.

5.6 Retrieval of owners address via log files

The Wi-Fi credentials enable the attacker to connect to the previous
owner’s Wi-Fi. With the SSID and the stored Wi-Fi access point
MAC addresses, it is possible to search for the previous position
using search engines like WiGLE 1. The more precise Google Geolo-
cation API [22] requires at least two MAC addresses for the position
retrieval. Due to the network connection log-files and Wi-Fi survey
log-files, it is possible to find two or more MAC addresses of the
surroundings of the previous owner. In some cases, a device owner
used two or more Wi-Fi access points with the same SSID (e.g.,
for a larger home). Some Wi-Fi credentials might contain personal
or location information. Interestingly, we found that kernel logs
censor the SSID, while event logs censor the BSSID (but not SSID).

6 CASE STUDY OF USED DEVICES

For our case study, we bought over 86 used Amazon Echo Dot
devices from private sellers on eBay and flea markets. To have a
comparison to different countries, we purchased devices from the
US, Germany and the Netherlands. Devices that one can find on
platforms like eBay can have different states. Some of the devices
are sold as used devices even though they never have been used and
are still in their original package. These devices never contained
any user information and are therefore irrelevant for our analysis.
For the purchase, we focus on devices which are described as “used”.
As an additional test group, we purchased 6 “certified refurbished”
devices from Amazon directly, which are in stock periodically. All
our purchases were made between July 2019 and November 2020.

6.1 Privacy-preserving analysis process

As we are aware that some devices might contain private informa-
tion, we developed a process to maintain the user’s privacy and not
use, manipulate, or reveal private information.

Upon arrival, the devices were labeled and inspected. No personal
information of the sender/seller is associated with the device.

For devices which have been purchased at a flea market, we did not
have any information about the sellers.

The devices are powered-on in order to check if they are still provi-
sioned. This can be determined if the “yellow ring” comes on after
approximately 30 seconds after the device boots. If the ring does
not turn orange, the wake-up word “Alexa” is said and if the device
responds that it has trouble connecting to the network, the device
is marked as “no reset”. At this point the assumption is that the
device still contains data, but it is unknown if the cloud binding
is still active. Due to ethical and legal considerations, there is no
simple way to verify if a device is still connected to a user account.

Uhttps://wigle.net/

As we did not associate a device to a seller, we cannot ask specific
questions. For this reason, we did not verify this.

If the “orange ring” comes up, the device has been reset to factory
settings or has never been provisioned. Therefore, it is not known
if there are traces of information on the device or if there is still a
cloud binding remaining (e.g., reset outside the range of the Wi-Fi).
In the next step, the device is disassembled, as we did not find a
trivial method of dumping the flash memory from outside the de-
vice. For that the bottom rubber plate is heated up to loosen up the
adhesive and to remove it. This plate hides the screws. The device
can be disassembled, and the PCB removed. The ICs inside are of
metal shielding cans which can be easily opened. For provisioned
and non-provisioned eMMC based devices the next step differs:

If the device is still provisioned, we can use ISP to create a dump of
the flash memory. A script confirms the presence of Wi-Fi creden-
tials and other information. Private information, like owner name
or Wi-Fi passwords, are not extracted. As the devices were not
associated to a particular seller, we have no association between
SSIDs / MAC addresses and a particular person.

For devices which are not provisioned, or which are using a NAND
flash IC, we use the Chip-Off approach as the deleted data is not
accessible through the eMMC interface. Here we use the methods
described in Section 3. Depending on the flash type, we can use
the test pins of the eMMC or directly read the NAND flash using a
flash reader. After creating the dump, a script automatically checks
for traces of Wi-Fi credentials and owner information.

In case of no traces, we assumed that the device was never pro-
visioned. This assumption also was based on the condition of the
device (e.g., sealed package, unused power supply, etc.). When traces
of Wi-Fi credentials are found, the number of findings was counted
and saved. Additionally, the SSID and MAC addresses are extracted
and saved. No further information is extracted.

For devices which were sold as broken we tried the ISP approach
first and if that approach failed (e.g., the device was too damaged),
we used the Chip-Off approach.

The correctness of the proposed methods was tested and confirmed
with our own Amazon Echo Dot 3rd Gen, which was in use for over
1 year and was moved multiple times.

6.2 Results

The results of the case study are summarized in Table 2. We used the
described analysis method to process all the devices we purchased.
Our main goal was to preserve the user’s privacy.

Not reset devices: A surprising number of devices (61%) were not
reset by the previous owners. Due to the setup of our experiment,
we had no possibility of asking the previous owners any questions.
It is unclear how many of the identified Wi-Fi credentials are still
valid. Also, we were not able to check if the devices are still bound
to the Amazon account. After interpretation of the data, we see
three potential explanations for the high number of devices which
have not been reset: missing user knowledge, missing awareness
and unclear reset instructions. From our own experience, the reset
procedure of Echo Dot devices can be misleading. When tried by
ourselves, we were deluded by the Wi-Fi setup mode, which is
triggered after 10 seconds. After power-cycling the device had not
been reset and we needed to press the button for a longer period.

Table 1: Keywords for detection of privacy related information

Category Keywords found?
Owner Owner name, username, email address | v/
Wi-Fi networks | SSID, PSK, BSSID, SSIDs in proximity | v/
Paired devices MAC addresses and names v
Geographical Address, GPS coordinates X

Table 2: Device states of purchased devices in case study

Source Total Prgf;ég;; d (slgis(est;) IEISE 5‘;’
eBay - working US | 38 24 63% 13 1
eBay - broken Us | 13 13 100% | O 0
local flea markets US | 9 6 66% 2 1
eBay - working DE | 16 9 56% 5 2
eBay - working NL | 10 5 50% 4 1

Broken devices: All the devices sold as broken still contained all
the data. However, this can be explained by the inability of the user
to reset the device when it is not powering on. The majority of the
devices had a broken power supply or bad power connector. Only
in two cases the actual PCB was broken, of which both indicated
water damage. We were not able to purchase a broken device with
a partial defect. It might be possible that users would reset a device
which has a broken speaker or some other minor defect. It is unclear
if the previous owners were aware of the data which is stored on
the device. However, in a situation with a broken device the choices
are limited: The device can be destroyed, thrown away or sold.
Recovered traces in reset devices: Even for devices which have
been reset by previous owners, we were still able to recover traces.
This means that a customer cannot rely on the private data being
deleted even if the customer follows the reset procedures. This is
especially concerning, as the user has no way of confirming that
all data has been erased.

Refurbished devices: We purchased six certified refurbished de-
vices in total directly from Amazon. These devices were not always
available and we assume that they are sold in batches. We noticed
that newer refurbished devices have the new revision of the PCB,
which uses NAND flash instead of eMMC. All of the devices ap-
peared to be unused, however were missing the serial number
sticker on the bottom side of the device. We did not find any traces
on the flash memory of the devices, neither on the eMMC nor the
NAND based revisions. Our assumption is that all of them are open
box returns, which have been refurbished. Another explanation
could be that all devices were opened and the PCB was replaced.
This also explains the missing serial number sticker as the rubber
base cover would have been replaced.

Ratio of reset devices over time: Over a period of 16 months
we did not observe a significant change in the ratio between pro-
visioned and reset devices. However, this observation is limited
by the amount of devices which have been purchased on average
per month and due to the fact that the previous owner might have
stopped to use the device for a period of time before selling it.

7 MITIGATIONS

Our analysis has revealed the weaknesses of protections of pri-
vacy related data in smart speakers. The implementation of secu-
rity features in devices like smart speakers or other IoT devices

is challenging, as this kind of devices has to meet particular user
expectations. Features like the requirement for user passwords or
PINs at power-up are likely unacceptable. While it might be more
difficult to establish the same level of security as for smart phones,
there are mitigations which increase the security and can likely be
implemented easily. In our opinion the devices should keep the user
data safe in all circumstances, independent of whether the device
has been reset properly or not.

7.1 Usage of eMMC security features

As discussed in part 3.1, the eMMC standard supports secure dele-
tion of information. However, none of the analyzed devices were
using these features. While this only applies to eMMC based de-
vices, the Sanitize or SecureTRIM commands can be used when the
user issues a reset to the user data partition. If the eMMC flash
adhered to the standard, the data would be erased from the physical
memory. While this would meet the users expectation for a factory
reset, it would not protect the data if the device was not reset. This
mitigation can be implemented easily by the vendors and would
not have negative impact for the users. A limitation is however, that
this operation is time intensive and will be interrupted if the user
disconnects the device from the power supply. Also the Sanitize is
blocking, so the flash cannot be used while the data is being erased.

7.2 Wear-leveling aware erasing of data

A device that uses raw NAND flash has potentially more low level
control over the physical data stored on the NAND. If the OS is
aware of the physical position of the data, it can erase the data
securely and make sure that no other copies exist. This feature needs
to be implemented in the FTL, e.g., in case of Linux this would be
the MTD subsystem. This mitigation is not applicable everywhere
as in some cases the integrated controller in the SoC has the control
over the NAND flash. This is mainly done for performance reasons,
especially as ECC computation is complex. We encountered this
issue with MediaTek based SoCs. In this case the OS would not
have full access to the raw NAND flash. Also, this mitigation would
not protect the user data if the device is not reset properly.

7.3 User data encryption

Our proposed mitigation is the encryption of the user data partition,
which would solve multiple problems: First, a physical attack on a
provisioned device cannot extract user data and credentials in a sim-
ple fashion anymore as a data dump would only contain encrypted
information to which an attacker needs to retrieve the respective
key first. This would protect the user credentials even if a reset
was not possible nor performed. Second, most of the issues with
wear-leveling are mitigated as all blocks are stored encrypted. The
identification and reassembly of such blocks becomes very difficult.
Also, the correct identification and reconstruction of traces of a
deleted key is in our opinion not possible or very unlikely. We be-
lieve that this mitigation can be implemented in firmware updates
and be enabled even for already provisioned devices. However, im-
plementations might have different challenges and implications.

Performance impact: All analyzed devices had multiple cores. We
believe that such devices have enough computation resources to

perform file system encryption without performance issues. How-
ever, this might does not apply universally to all IoT devices and
smart speakers. In cases of computation limits, the most critical
user data could be stored encrypted, decrypted in the boot phase
and then stored in memory.

Implementation: All of the analyzed devices use an Android based
operating system. Android supports encryption of the user data
partition [32]. The partition could be automatically unlocked at
boot-up. In case of a factory reset, the encryption keys should be
deleted and regenerated.

Key storage: In order to be able to unlock the partition, the keys
need to be stored on the device. Depending on the storage, the key
might be subject to wear-leveling. In case of a factory reset, the
device needs to ensure that the keys gets deleted. A way to ensure
this could be to use the previously mentioned ways to erase data.
Due to the rather small size of the key such an operation would
be very fast. Another problem is that the user data must remain
safe even if the device has not been reset and the key has not been
deleted. One way to achieve this would be to store the key where
it cannot be accessed, e.g. the efuses in the SoC. While this would
prevent a simple dump of the key from the flash memory, it would
also mean that the key is static. If the key can be extracted in the
future, it might be used to decrypt old data. The devices we en-
countered had SoCs which used ARM TrustZone for key storage
and integrity protection. Since the previously mentioned approach
suffers from major drawbacks, we propose to use ARM TrustZone
to store the encryption key for the user data partition and to bind
it to the SoC instead. This would ensure that the SoC needs to be
present in order to unlock the user data partition. Additionally, we
recommend that the RPMB is used.

Limitations: We encountered vendors which encrypted the user
data partition with LUKS and used ARM TrustZone to store the key.
However, we were still able to access the user data by abusing
vulnerabilities in the firmware. While the data is protected at rest,
it can be accessed by the OS when the device is powered on. We
noticed that some devices were also subject to downgrading attacks,
in particular as the RPMB was not used.

8 COMPARISON TO OTHER DEVICES AND
VENDORS

In order to gain an understanding of whether the found issues
were exclusively related to Amazon Echo Dots, we analyzed other
Amazon products and comparable devices. For this analysis we
selected devices depending on availability and based on a similar
price range. We purchased a small number of used devices, therefore
the results are not representative. We used the same method as for
the Amazon Echo Dots. In our analysis we found very similar issues.
Amazon Echo Show 5: The Echo Show 5 (H23K37) was released in
Q22019 by Amazon. In comparison to the Echo Dot it has a 5.5 inch
touch-screen display, which can be used for user interaction. Such
interactions can be using the integrated browser, retrieving recipes
or watching videos in Amazon Prime Video. A front facing camera
allows video calls. All the other features of the Echo Dot, like the
Alexa virtual assistant, are supported. The devices we analyzed had
the FCC ID 2ARIV-2425. The device uses the MediaTek MT8163V,
the same SoC as the Echo Dot 2nd Gen. It supports Wi-Fi and

Bluetooth. The system has a separate 1 GByte DDR3 RAM and an
8 GByte eMMC flash memory.

Amazon uses again FireOS 6 (based on Android 7.1.2 Nougat) for
this device. However, the user can not install apps from the Amazon
Appstore or Google Play. Instead, only Alexa skills can be installed.
The integrity of the OS is protected by dm-verity but the partition
containing user data is not encrypted. The user can configure the
Wi-Fi or trigger a factory-reset using the touch screen. We noticed
that a change of the Wi-Fi configuration requires an additional
confirmation by the user by requiring to login with the Amazon
account credentials. In our experiment we were able to extract the
same amount of data as for the Amazon Echo Dot.

Due to the possibility of user interaction, we were also able to

extract user data from the browser. We purchased two used and
two broken devices. Both used devices were reset, but we were able
to find traces of the previous owner’s data. The broken devices still
contained all user data.
Google Home Mini: The Google Home Mini (HOA) is a direct
competitor to the Amazon Echo Dots and is a smart speaker that
uses the Google assistant. We analyzed the model with the FCC
ID A4RHOA, which was released in late 2017. It is based on the
Marvell 88DE3006 SoC, which is an ARM Cortex-A7 Dual-Core.
The device contains 512 MByte of DDR3 RAM and 256 MB of NAND
flash. Compared to the Amazon Echo Dots the device offers similar
connectivity, such as Wi-Fi and Bluetooth, which is provided by
the Marvell Avastar 88W8887 IC.

The Google Home Mini is based on Android. Similar to the
Amazon Echo Dot it also uses integrity protection of the OS by
employing dm-verity. We found that the configuration data, like
Wi-Fi credentials and tokens, are stored unencrypted on the de-
vice. The device has a reset button on the bottom side of the case.
However, the button is hidden under the rubber floor plate and is
not directly obvious for users. We purchased five used devices and
found that all of the devices were not reset by the previous owners.
Amazon FireTV 3rd Gen: Amazon FireTV (AFTN) is a line of
digital media players which offer access to Amazon services, such
as Amazon Prime Video, on a TV. Alexa is integrated as a virtual
assistant and can be controlled by voice using the FireTV remote.
The device which we analyzed was the FireTV 3rd Gen, which has
the FCC ID 2ALBL-1731. It was released in 2017 and is based on the
Amlogic S905Z (Octa-core ARM Cortex-A53-based SoC). It contains
2 GByte dedicated DDR3 RAM and 8 GByte eMMC flash memory.

The operating system in use is FireOS 6 which is based on An-
droid 7.1.2 Nougat. The user can install apps from the Amazon
Appstore. For example, apps like Netflix or Firefox can be installed
and used. Similar to the previously discussed Amazon Echo devices,
the OS is protected using using dm-verity, and the user data parti-
tion is not encrypted. This enabled us to extract private data from
a device which was not reset once again. Due to the possibility of
installing apps, we were also able to extract browser histories, saved
credentials or access tokens to third-party apps, like Netflix. We
purchased two used, working devices and one broken device. One
of the working devices was reset, but we were able to detect traces
of private data. The other two devices still contained all private
information.

Xiaomi Smart Al speaker with display: The Xiaomi Smart Al
speaker (LX04) is very similar to the Amazon Echo Show 5 and was

released in 2019. It has a 4 inch touch-screen display. The device
is geared towards the Mainland China market and not officially
marketed to different regions. It supports Xiaomi’s own virtual
assistant, “XiaoAl” and can also be used to control any Mijia smart
home devices. The SoC is a MediaTek MT8163. The device has 1
GByte of DDR3 RAM and 8 GByte of eMMC flash.

The operating system is based on Android 8.1.0 Oreo. The user
cannot install custom applications. However, the system contains
a browser and E-Mail client. The integrity of the OS is protected
by dm-verity. In contrast to the previously described devices, the
device contains encrypted partitions. While it is not possible to
access the user data via the Chip-Off approach, we were still able
to use a vulnerability in the firmware to downgrade the firmware,
and then extract the keys and information. We did not purchase
used devices of this model.

9 RELATED WORK

Reverse engineering Amazon Echo devices has been a topic of
interest since their first generations. In 2016 Clinton et al. [18] did
a hardware analysis of the Linux-based Amazon Echo (1st Gen).
It had few security features. Hyde and Moran [25] forensically
examined in 2017 the Amazon Echo Dot (1st and 2nd Gen), Amazon
Echo (1st Gen) and the Amazon app. They used UART and ISP
to access the devices. They retrieved Wi-Fi information from the
Amazon Echo via ISP and other information from Amazon apps. Li
et al. [27] proposed a forensic analysis model and used extracted
artifacts from the Amazon Echo and the Alexa app as a use case to
demonstrate their model.

Chung et al. [17] explored in 2017 the communication of the

Amazon app and the cloud. Their focus was on the artifacts and
databases of the Amazon app. Early devices had limited protec-
tions providing easy access for reverse engineering and data. Since
then Amazon increased the security of the Echo Dot devices. More
recently, Pawlaszczyk et al. [31] examined the Amazon Echo Dot
Gen3 and the Alexa app. The authors used a destructive Chip-off
method to remove the eMCP IC and specialized forensics equip-
ment to access the eMMC flash.
All previously mentioned work only uses provisioned devices. To
our knowledge our work is the first on several dimensions, (1)
demonstrates the retrieval of private users data from even factory
reset devices (exploiting wear-leveling), (2) demonstrates the ability
to hijack a previous user Amazon account, (3) is non-destructive
and systematic, and (4) applied to a relatively large set of user de-
vices revealing, poor users security practices, and usable security
limitations. We responsibly disclosed our results to Amazon. The
company reproduced and confirmed our findings. This applies also
for newer models. Currently Amazon is still working on integrating
a mitigation into the devices.

ACKNOWLEDGMENTS

This work was partially supported by grants NCAE-Cyber Re-
search Program, and NSF/DGE-1661532. We would also like to
thank Cameron Kennedy and Erik Uhlmann for their valuable in-
put, advice and for the interesting discussions.

REFERENCES [28] MediaTek. 2020. MediaTek 8516 Datasheet. (2020). https://www.mediatek.com/

[1] 2011. NAND Flash Table. (Jul 2011). http://www.linux-mtd.infradead.org/ produgts/tgblets/mtSSlG [Online; accessed 02. May. 2020].))
nand-data/nanddata.html [Online; accessed 7. July. 2020]. [29] Alastair Nisbet, Scott Lawrence, and Matthew Ruff. 2013. A forensic analysis

and comparison of solid state drive data retention with trim enabled file systems.

[2] 2019. Juniper Estimates 3.25 Billion Voice Assistants Are in Use Today, Google
Has About 30% of Them - Voicebot.ai. (Feb 2019). shorturl.at/uHNOP [Online; (2013). . .
accessed 4. Aug. 2020]. [30] Jeong Wook Oh. 2014. Reverse engineering flash memory for fun and benefit.
[3] 2020. 2017 Fire HD 10: Unbricking from anti-rollback. (Aug Blackhat US (2014).) . ;)
2020). https://forum.xda- developers.com/hds-hd10/development/ [31] D Pa\fvlas;czyk,] Friese, and C Hummert. 2019. Alexa, tell me..”-A forensic
2017-fire-hd-10-unbricking-anti-rollback-t3896616 ~ [Online; accessed 31. examination of the Amazon Echo Dot 3 rd Generation. (2019).)
Aug. 2020]. [32] Android Open Source Project. 2020. Full-Disk Encryption | Android Open Source

Project. (2020). https://source.android.com/security/encryption/full-disk [Online;

[4] 2020. Amazon Echo Dot : CVE security vulnerabilities, versions and de-
accessed 02. May. 2020].

tailed reports. (Aug 2020). https://www.cvedetails.com/product/46475/

Amazon-Echo-Dot html?vendor_id=12126 [Online; accessed 4. Aug. 2020]. [33] Android Open Source Project. 2020. Verified Boot | Android Open Source Project.
[5] 2020. Fire HD 8 (2018 OI:ILY) unbrick, downgrade, unlock & root. (2020). https://source.android.com/security/verifiedboot [Online; accessed 02.

(Aug 2020). https://forum.xda-developers.com/hd8-hd10/orig-development/ May. 2020].

fire-hd-8-2018-downgrade-unlock-root-t3894256 [Online; accessed 31. Aug. [34] Rusolut. 2018. eMMC CHIPS. DATA RECOVERY BEYOND CONTROLLER. (2018).

2020]. https://rusolut.com/wp-content/uploads/2018/10/eMMCvsNAND.pdf BelkaDay
[6] 2020. Pryon. https://www.pryon.com/. (Oct 2020). [Online; accessed 1. Oct. - Belkasqft Digital Forensic Conference 2018, Prague, Czech Repgbhc.

2020]. [35] Lea Schénherr, Maximilian Golla, Thorsten Eisenhofer, Jan Wiele, Dorothea
[7] 2020. Sleuthkit Autopsy features. (Aug 2020). http://www.sleuthkit.org/autopsy/ Kolossa, and Thorsten Holz. 2020. Unacceptable, where is my privacy? Exploring

Accidental Triggers of Smart Speakers. (2020). arXiv:cs.CR/2008.00508

Arie Tal. 2002. Two flash technologies compared: NOR vs NAND. White Paper of
M-Systems (2002).

Jan Peter van Zandwijk. 2015. A mathematical approach to NAND flash-memory
descrambling and decoding. Digital Investigation 12 (2015), 41 — 52. https:

features.php [Online; accessed 1. Aug. 2020].
[8] 2020. [UNLOCK][ROOT][TWRP][UNBRICK] Fire HD 8 2017 (douglas). (36
(Aug 2020). https://forum.xda-developers.com/hd8-hd10/orig-development/
unlock-fire-hd-8-2017-douglas-t3962846 [Online; accessed 31. Aug. 2020].
Amazon. 2020. Amazon.com Help: Amazon Frustration-Free Setup Frequently - s
Asked Questions. (2020). https://www.amazon.com/gp/help/customer/display. //4"‘-0‘%/10;1°16/J<d“"-2015<°1-°°3 .
html?nodeld=GMPKVYDBR223TRPY [Online; accessed 15. Mar 2020]. Ml(?hael Wei, 'Laura M. Grupp, Frederick E. S'pada, and Steven Swansog. 2011.
[10] Amazon. 2020. Fire OS 6 for Fire Tablets | Fire Tablets. (2020). https://developer. Reliably Erasing Data from Flasthased Solid State D“YES' In Pjroceedmgs of
amazon.com/docs/fire-tablets/fire-os-6.html [Online; accessed 02. May. 2020]. the gzh USENIX Conference on File and Stroage Technologies (FAST’11). USENIX
Amazon. 2020. Overview of Amazon Device Messaging | Amazon Device Mes- Association, USA, 8.

saging. (2020). https://developer.amazon.com/docs/adm/overview.html [Online; [39] Li Zhang, ?“ an Tan, an'd Qi kl'm Zhan.g.' 2012. Idf':ntiltication of NAND flash
accessed 02. May. 2020]. ECC algorithms in mobile devices. Digital Investigation 9, 1 (2012), 34 — 48.

https://doi.org/10.1016/j.diin.2012.04.001

[37

=
X0
"
&, =

[11

[12] Amazon. 2020. Understanding Frustration-Free Setup | Frustration-Free
Setup. (2020). https://developer.amazon.com/docs/frustration-free-setup/
understanding-ffs.html [Online; accessed 15. Mar 2020].

[13] JEDEC Solid State Technology Association. 2010. Embedded MultiMediaCard
(eMMC) eMMC/Card Product Standard, High Capacity, including Reliable Write,
Boot, Sleep Modes, Dual Data Rate, Multiple Partitions Supports, Security En-
hancement, Background Operation and High Priority Interrupt (MMCA, 4.41).
JESD84-A441 (2010).

[14] JEDEC Solid State Technology Association. 2012. Embedded Multimedia Card
(eMMC), Electrical Standard 4.51. JESD84-B451 (2012).

[15] Marcel Breeuwsma, Martien De Jongh, Coert Klaver, Ronald Van Der Knijff, and
Mark Roeloffs. 2007. Forensic data recovery from flash memory. Small Scale
Digital Device Forensics Journal 1, 1 (2007), 1-17.

[16] Byungjo Kim, Dong Hyun Kang, Changwoo Min, and Young Ik Eom. 2014. Un-

derstanding implications of trim, discard, and background command for eMMC

storage device. In 2014 IEEE 3rd Global Conference on Consumer Electronics (GCCE).

709-710.

Hyunji Chung, Jungheum Park, and Sangjin Lee. 2017. Digital forensic approaches

for Amazon Alexa ecosystem. Digital Investigation 22 (2017), S15 — S25. https:

//doi.org/10.1016/j.diin.2017.06.010

[18] Ike Clinton, Lance Cook, and Shankar Banik. 2016. A survey of various methods

for analyzing the amazon echo. The Citadel, The Military College of South Carolina

(2016).

Jim Cooke. 2007. The inconvenient truths of NAND flash memory. Flash Memory

Summit 3, 3 (2007), 3-1.

[20] Daniel J. Dubois, Roman Kolcun, Anna Maria Mandalari, Muhammad Talha
Paracha, David Choffnes, and Hamed Haddadi. 01 Oct. 2020. When Speakers Are
All Ears: Characterizing Misactivations of IoT Smart Speakers. Proceedings on
Privacy Enhancing Technologies 2020, 4 (01 Oct. 2020), 255 - 276.

[21] Amir Etemadieh, CJ Heres, and Khoa Hoan. 2017. Hacking Hardware With A

$10 SD Card Reader. Blackhat US (2017).

Google. 2020. Overview | Geolocation API | Google Developers. (2020). https:

//developers.google.com/maps/documentation/geolocation/overview [Online;

accessed 02. May. 2020].

[23] Open NAND Flash Interface Working Group. 2020. Open NAND Flash Interface

Specification. ONFI 4.2 (2020).

Peter Gutmann. 2001. Data Remanence in Semiconductor Devices.. In USENIX

Security Symposium. 39-54.

Jessica Hyde and Brian Moran. 2017. Alexa, are you Skynet. SANS Digital

Forensics and Incident Response Summit (2017).

Magnus Larsson. 2015. Sanitization of embedded network devices: Investigation

of vendor’s factory reset procedure. (2015).

[27] S.Li, K. R. Choo, Q. Sun, W. J. Buchanan, and J. Cao. 2019. IoT Forensics: Amazon
Echo as a Use Case. IEEE Internet of Things Journal 6, 4 (Aug 2019), 6487-6497.
https://doi.org/10.1109/JI0T.2019.2906946

[17

[19

[22

[24

[25

[26

http://www.linux-mtd.infradead.org/nand-data/nanddata.html
http://www.linux-mtd.infradead.org/nand-data/nanddata.html
shorturl.at/uHNOP
https://forum.xda-developers.com/hd8-hd10/development/2017-fire-hd-10-unbricking-anti-rollback-t3896616
https://forum.xda-developers.com/hd8-hd10/development/2017-fire-hd-10-unbricking-anti-rollback-t3896616
https://www.cvedetails.com/product/46475/Amazon-Echo-Dot.html?vendor_id=12126
https://www.cvedetails.com/product/46475/Amazon-Echo-Dot.html?vendor_id=12126
https://forum.xda-developers.com/hd8-hd10/orig-development/fire-hd-8-2018-downgrade-unlock-root-t3894256
https://forum.xda-developers.com/hd8-hd10/orig-development/fire-hd-8-2018-downgrade-unlock-root-t3894256
https://www.pryon.com/
http://www.sleuthkit.org/autopsy/features.php
http://www.sleuthkit.org/autopsy/features.php
https://forum.xda-developers.com/hd8-hd10/orig-development/unlock-fire-hd-8-2017-douglas-t3962846
https://forum.xda-developers.com/hd8-hd10/orig-development/unlock-fire-hd-8-2017-douglas-t3962846
https://www.amazon.com/gp/help/customer/display.html?nodeId=GMPKVYDBR223TRPY
https://www.amazon.com/gp/help/customer/display.html?nodeId=GMPKVYDBR223TRPY
https://developer.amazon.com/docs/fire-tablets/fire-os-6.html
https://developer.amazon.com/docs/fire-tablets/fire-os-6.html
https://developer.amazon.com/docs/adm/overview.html
https://developer.amazon.com/docs/frustration-free-setup/understanding-ffs.html
https://developer.amazon.com/docs/frustration-free-setup/understanding-ffs.html
https://doi.org/10.1016/j.diin.2017.06.010
https://doi.org/10.1016/j.diin.2017.06.010
https://developers.google.com/maps/documentation/geolocation/overview
https://developers.google.com/maps/documentation/geolocation/overview
https://doi.org/10.1109/JIOT.2019.2906946
https://www.mediatek.com/products/tablets/mt8516
https://www.mediatek.com/products/tablets/mt8516
https://source.android.com/security/encryption/full-disk
https://source.android.com/security/verifiedboot
https://rusolut.com/wp-content/uploads/2018/10/eMMCvsNAND.pdf
http://arxiv.org/abs/cs.CR/2008.00508
https://doi.org/10.1016/j.diin.2015.01.003
https://doi.org/10.1016/j.diin.2015.01.003
https://doi.org/10.1016/j.diin.2012.04.001

	Abstract
	1 Introduction
	2 The Amazon Echo Platform
	3 NAND/eMMC Flash Forensic
	3.1 Overview of Flash-Based Storage
	3.2 Data Extraction using ISP
	3.3 Chip Removal and Re-soldering (Chip-Off)
	3.4 Hybrid Chip-Off for eMCP
	3.5 Reading raw NAND from eMMC/eMCP ICs

	4 Effects of wear-leveling
	5 Attacking used Echo Dot devices
	5.1 Availability of used devices
	5.2 States of used devices
	5.3 Extraction of data of Echo devices
	5.4 Identification of information
	5.5 Retrieval of address via voice commands
	5.6 Retrieval of owners address via log files

	6 Case Study of Used Devices
	6.1 Privacy-preserving analysis process
	6.2 Results

	7 Mitigations
	7.1 Usage of eMMC security features
	7.2 Wear-leveling aware erasing of data
	7.3 User data encryption

	8 Comparison to other devices and vendors
	9 Related work
	Acknowledgments
	References

